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Abstract—We propose a multiple initialization based spectral
peak tracking (MISPT) technique for heart rate monitoring from
photoplethysmography (PPG) signal. MISPT is applied on the
PPG signal after removing the motion artifact using an adaptive
noise cancellation filter. MISPT yields several estimates of the
heart rate trajectory from the spectrogram of the denoised PPG
signal which are finally combined using a novel measure called
trajectory strength. Multiple initializations help in correcting
erroneous heart rate trajectories unlike the typical SPT which
uses only single initialization. Experiments on the PPG data from
12 subjects recorded during intensive physical exercise show that
the MISPT based heart rate monitoring indeed yields a better
heart rate estimate compared to the SPT with single initialization.
On the 12 datasets MISPT results in an average absolute error
of 1.11 BPM which is lower than 1.28 BPM obtained by the
state-of-the-art online heart rate monitoring algorithm.

Index Terms—Adaptive noise cancellation, heart rate moni-
toring, spectral peak tracking.

I. INTRODUCTION

R EAL-TIME heart rate (HR) estimation from the photo-
plethysmography (PPG) signal is a key step in developing

wearable devices that can monitor the HR in a non-invasive way
[1], [2]. The PPG signal is optically obtained by pulse oxime-
ters and its periodicity corresponds to the cardiac rhythm [3].
In spite of the HR information available in the PPG signal, re-
liable estimation of the HR is not straight-forward due to the
fact that the PPG signal is vulnerable to motion artifacts (MA),
which strongly interfere with the HR. Given that such wearable
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devices are widely used by field medics and during sports ac-
tivity, depending on the type of physical activity of the user,
the MA component can completely mask the HR information in
the PPG signal causing the HR monitoring from the PPG signal
challenging [4], [5].
A typical approach in estimating the HR in the presence of

MA is to first remove MA from the PPG signal. There are sev-
eral techniques in the literature for removing MA from the PPG
signal [6]. A few denoising techniques do not require motion
data [7] from an accelerometer while some others do. Indepen-
dent Component Analysis (ICA) is one technique where motion
data is not required; however, it requires multiple PPG sensors
[8]. ICA has been proposed in both time-domain [9] and fre-
quency-domain [10]. However, the assumption of statistical in-
dependence in ICA does not hold well in the PPG signal con-
taminated by MA [11].
On the other hand, when the acceleration data is available,

the MA component is adaptively canceled from the PPG signal
using adaptive filter based algorithms including least mean
square (LMS), normalized LMS [12], [13], fast transversal re-
cursive least square (RLS) [14] algorithms as well as spectrum
subtraction technique [15] and Laguerre basis function based
signal representation [16]. Other MA-removal techniques
include physical artifact model [17], time-frequency analysis
[18], wavelet denoising [19], [20], higher order statistics [10]
and empirical mode decomposition [21], [22], to name a few.
However, in case of an intensive physical exercise, most of
these techniques do not work well [11]. Acceleration data has
also been used for the observation model of Kalman filter [23]
as well as Kalman smoother [24] to remove MA.
In contrast to the adaptive filtering [25], Zhang et al. [11] pro-

posed a TROIKA framework, where a high-resolution spectrum
of the PPG signal is calculated using sparse signal reconstruc-
tion following signal decomposition using the singular spectrum
analysis. Spectral peak tracking (SPT) is performed on the re-
constructed PPG spectra to estimate the HR, which has been
shown to be effective when there is a strong MA component in
the PPG signal. However, the SPT solely depends on the ini-
tialization of the HR in the first frame. In case of erroneous ini-
tialization, the entire estimated HR trajectory could be different
from the actual HR trajectory.
In another approach, namely JOSS, proposed by Zhilin Zhang

[26], common spectral structures between the PPG signal and
the accelerometer signals are exploited. Multiple measurement
vector model is used for joint sparse spectrum reconstruction. To
remove the frequency bins of MA in the PPG spectrum, spectral
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Fig. 1. Flowchart for the MISPT based HR estimation at the -th frame. Along with the HR estimate, is returned for an input in the next frame.

subtraction is performed on the reconstructed spectrum. SPT is
similar to that in the TROIKA framework [11] with a trigger
of discovery mechanism whenever the estimated HR does not
change for three consecutive frames.
Among different available MA cancellation algorithms, we,

in this work, choose Windrow’s adaptive noise cancellation
(ANC) [27], which was used to remove in-band motion distur-
bances in the PPG signal [28]. In order to estimate the HR from
the denoised PPG signal, we perform SPT in a manner similar
to the work by Zhang et al. [11], [26]. However, we include a
novel multiple initialization scheme unlike single initialization
in TROIKA [19] or a trigger-driven initialization in JOSS [26].
We refer to the proposed approach as multiple initialization
based SPT (MISPT), in which multiple estimated HR trajec-
tories from multiple initializations are combined using a novel
measure called trajectory strength. We demonstrate the benefit
of multiple initializations by estimating HR from the PPG
signal recorded during intensive physical exercise.
We begin with a detailed description of the MISPT based

HR estimation in the next section (Section II). In Section III,
we summarize the results on the 12 datasets which are used in
[26]. We experimentally show that multiple initializations in-
deed help in obtaining better HR estimates compared to single
initialization. Conclusions are made in Section IV.

II. MISPT BASED HR ESTIMATION

MISPT based HR estimation consists of two stages, which
are described in detail in the following subsections.

A. MA Removal

MA removal using ANC is the first step in the proposed
MISPT based HR estimation. In ANC [28], a linear model is
assumed for deriving a relation between the motion and the
corresponding artifact in the PPG signal. In other words, the
artifact is related to the motion through a linear filter

i.e., where denotes the convolution
operator. For computational convenience, we approximate
the filter to have an impulse response of finite order. We also
assume that the MA is additive, i.e., the observed PPG signal

, where is the original PPG signal.
Given these assumptions, we try to recover by esti-

mating . The cost function to be minimized by the filter is
the mean squared error between and [16]. is as-
sumed to be adaptive in that its coefficients change for every
analysis window.
The estimated filter with the impulse response gives us

the estimated MA, , as:

(1)

The denoised PPG signal, , is then estimated as:

(2)

For estimation of HR, spectrum of is computed using
the fast Fourier transform with an order .

B. Multiple Initialization Spectral Peak Tracking

MISPT is the second step in the proposed approach. In
MISPT, the HR estimate at the -th frame is obtained using
spectra of all frames till the -th frame, i.e., ,

and , where and are frequency
location indices corresponding to 0.4 and 5 Hz respectively.
These frequencies are chosen because the HR typically lies
within the range 0.4-5 Hz. denotes the spectrum of

at the -th frequency bin at the -th frame. Typically the
location corresponding to the highest peak in the spectrum of a
frame reflects the HR at that frame.
However, the peak corresponding to the HR may be masked

when there is a strong or overlapping MA component. In such
scenarios, SPT [11] is generally performed to estimate HR over
frames (HR trajectory).
Unlike the traditional SPT, in the proposedMISPT, the initial-

ization is done at every frame(s) starting with the first frame.
If initialization is done at -th frame, the SPT is performed in
both forward and backward directions to obtain a HR trajec-
tory denoted by , and

. Since a HR trajectory is initiated at every frame,
1 HR trajectories would be present at the -th frame. How-

ever, many of these trajectories may be identical to each other.
Let be the -th unique HR
trajectory at the -th frame where is the number of unique
trajectories. Let the set of unique HR trajectories at the -th
frame be denoted by

(3)

The HR is finally estimated using a measure called trajectory
strength (TS) of the unique trajectories in . The flowchart
(Fig. 1) illustrates the steps involved in MISPT at the -th
frame. In order to reduce the computational complexity in
MISPT implementation, is computed in a recursive manner,
i.e., is used as an input in addition to the denoised
spectrogram up to the -th frame. The details of the SPT and
the TS based HR estimation are explained in the following
subsections.
1) SPT: Both forward and backward SPT on the denoised

PPG spectrogram are done in a manner similar to the algorithm

1 denotes the highest integer less than .
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Fig. 2. Illustration of MISPT based HR estimation at -th frame - (a) ,
unique trajectories till ( )-th frame, (b) ,
trajectory initialized at -th frame (c) , (d) Estimated HR.

proposed by Zhang et al. [11] involving three main steps - ini-
tialization, peak selection, and verification. The search range for
the peak in the current frame is set around the peak location of
the neighboring frame using a small positive integer .
As shown in Fig. 1, at first the SPT is performed on the

unique trajectories in using the spectrum of the -th
frame to obtain .
If the current frame is an integer multiple of , then the
spectral initialization followed by the backward SPT is executed
to get a new trajectory of length . If this new trajectory ( )
matches exactly with any of the unique trajectories from ,
then is assigned to . Otherwise the union of and is
assigned to . This increments the number of unique trajecto-
ries by one.
2) TS Based HR Estimation: Due to MISPT, we obtain

unique trajectories at the -th (current) frame. Let us denote
the TS of the -th unique trajectory by S defined as

S (4)

Since the actual HR trajectory should pass through the peaks
in the spectra of different frames, the TS of the actual HR trajec-
tory, in general, would be higher than other spurious trajectories.
Hence, the frequency location index corresponding to the
estimated HR at the -th frame is chosen to be the point of the
unique trajectory which has the highest TS at the -th frame.
In other words , where S .
For illustration, in Fig. 2, we consider a denoised PPG spec-

trogram up to -th frame and the unique trajectories
as inputs for MISPT algorithm. The black dots in the plots of
the trajectories in (Fig. 2(a)) indicate the points of ini-
tialization of the unique trajectories. The initialization at the
-th frame (blue solid circle) and the corresponding HR tra-

jectory (red curve) obtained by the backward SPT are shown in
Fig. 2(b). It should be noted that the initialization does not cor-
respond to the ground-truth HR at the -th frame (denoted by
solid star in Fig. 2(b)). It is also seen that the HR trajectory with
initialization at the -th frame turns out to be a new trajectory
(as shown in Fig. 2(c)) although the initialization point falls on
one of the existing unique trajectories. This is because the tra-
jectory formed by the backward SPT from an initial point may
not match with the trajectory obtained from a forward SPT on

which the initial point lies. Finally the frequency location index
of the estimated HR, , for the denoised PPG spectrogram is
shown by a red square in Fig. 2(d).
The HR in BPM is calculated from using

, where is the sampling
rate of the PPG signal. It is important to note that the final
HR estimate (red square) at the -th frame is different from
the frequency (blue solid circle) where the initialization is
done. This indicates that the TS based HR estimate need not
necessarily match with the highest peak of the spectrum in
a frame resulting in a HR estimate robust to the residual MA
components in the denoised PPG signal.

III. EXPERIMENTAL RESULTS

A. Datasets

For the experiments in this paper, we have used the PPG
signal from 515 nm wavelength pulse oximeter and 3 ac-
celerometer signals from tri-axis accelerometer along with
single channel ECG as discussed in [26]. Data was collected
from 12 male subjects of yellow skin aged between 18 to 35
years. Pulse oximeter and accelerometer were embedded in
a wrist band. ECG signal was acquired from wet electrodes
pasted on the chest. Data from these 12 subjects constitute
the 12 datasets used in this work. ECG signal was manually
annotated for ground-truth which is used for evaluation. The
annotations are averaged over 8 seconds window with a shift of
2 seconds. PPG, accelerometer and ECG signals are sampled
( ) at 125 Hz.
Data was collected from the subjects during walking or

running on treadmill with speeds 1-2 km/hour for 0.5 minute,
6-8 km/hour for 1 minute, 12-15 km/hour for another minute
and then go back to rest in 2.5 minutes in the reverse order of
speed. Subjects were requested to minimize their hand move-
ments for first 2-3 seconds. After which they had to perform
actions such as buttoning the shirt, wiping off sweat.

B. Experimental Settings

HR estimation is done for each 8 seconds window (1000 sam-
ples) with a shift of 2 seconds (250 samples). ANC filter order is
set to 9. is chosen as 8192. Initialization parameter ( )
is varied from 1 to 1612 with a step of 1. The evaluation window
( ) for SPT is chosen to be 20.
Absolute average error (AAE) between the annotation

( ) and estimate ( ) is used to evaluate the
performance of the algorithm as in [11], [26].

(5)

where is the number of frames for which the HR is estimated.
The standard deviation ( ) is computed over all the frames of
12 datasets.
Evaluation of the proposed HR estimation is done on 1768

frames of 12 datasets as done in [11]. In addition, we also report
results after excluding few initial frames (i.e., over 1745 frames)

2Among various datasets, dataset8 has the highest number of frames .
Then would correspond to SPT on all datasets.
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TABLE I
AAE (IN BPM) FOR EACH DATASET USING THE PROPOSED MISPT BASED HR ESTIMATION AS WELL USING JOSS AND TROIKA. AVERAGE (SD) AAE
OVER FRAMES OF ALL DATASETS IS ALSO REPORTED. BOLD ENTRY IN EACH COLUMN INDICATES THE LEAST AAE OBTAINED BY AN ALGORITHM

ON THE RESPECTIVE DATASET. THE UNDERLINED ENTRY SHOWS THE LEAST AAE OVER THE ENTIRE DATASET

Fig. 3. Effect of Delta on AAE. The blue dots show the AAE averaged over
12 datasets for the respective . The black curve indicates the trend.

Fig. 4. Illustration of the original and estimated HR for three datasets.

of some datasets as done in [26]. The excluded frames corre-
spond to the first 12 seconds of set 2, 8 seconds of set 3, 2 sec-
onds of set 4, 2 seconds of set 8, 6 seconds of set 10 and 2 sec-
onds of set 11. For comparison, we have used both TROIKA
[11] as well as JOSS [26] algorithms.

C. Results and Discussion

Fig. 3 shows the change in the AAE with different values
of . The AAE is averaged over all frames of 12 datasets. It is
clear that decreasing reduces the AAE indicating that multiple
initialization indeed helps in improving the HR estimate. It can
be seen that SPT with single initialization ( ) results in
an AAE of 1.46 BPM while MISPT with results in an
AAE of 1.11 BPM. From the plot it is also clear that the drop in
AAE due to decreasing is not gradual. In fact, on an average,
there is no drop in AAE for . As decreases below 40,
a drop in AAE is observed with the least AAE for . It
should be noted that results in the least AAE consistently
for all 12 datasets. Hence, all results are reported for in
this work. Fig. 4 shows the ground-truth and estimated HR for
randomly chosen three datasets. It is clear that the ground-truth
and estimated HR trajectories match well.
Listed in Table I are the AAE for each of the 12 datasets along

with mean AAE and across frames of all datasets. Since re-
sults of JOSS were reported with PPG downsampled at 25 Hz,
we also report the MISPT based results with PPG at 25 Hz.
This is denoted by MISPT-25. For the MISPT on the 125 Hz
PPG signal, the scheme is referred to as MISPT-125. Similarly,
TROIKA-25 and TROIKA-125 refer to the TROIKA frame-
work when applied to the PPG signal with 25 Hz and 125 Hz
respectively.

It is clear that AAE over all frames of 12 datasets using
MISPT-125 is lower than that using JOSS, TROIKA-25,
and TROIKA-125 by 0.17, 1.31 and 1.23 BPM (absolute)
respectively. These AAE reductions are 0.02, 1.16 and 1.08
BPM (absolute) when MISPT-25 is used indicating the better
performance of MISPT over the state-of-the-art techniques.
Comparison of AAE for each dataset shows that MISPT-125
achieves lower AAE for seven datasets (set 3, 4, 6, 8, 9, 10,
12) compared to JOSS. This is true for MISPT-25 too. When
the initial few frames of some datasets are removed (as done
in JOSS), the average (SD) AAE values over all datasets
turn out to be 1.24 (2.90) and 1.10 (2.32) for MISPT-25 and
MISPT-125 respectively suggesting further improvement over
the JOSS performance. SD of MISPT-125 is less than all other
algorithms which shows that HR estimates from MISPT-125
are closer to the manually annotated HR from the ECG signal
compared to the state-of-the-art techniques.

IV. CONCLUSIONS

The proposed MISPT for HR monitoring uses an ANC filter
for removing the MA in the PPG signal and combines multiple
heart rate trajectories obtained by the SPT from multiple initial-
izations to result in a better HR estimation accuracy compared
to the state-of-the-art techniques. On an average, the MISPT
based HR estimation takes 1.03 seconds (ranging from 0.94 sec-
onds to 1.11 seconds)3 for each of the 12 datasets, where each
set is approximately 5 minutes long. Thus, the fast and accu-
rate HR estimation using the proposed MISPT technique could
potentially improve the quality of HR monitoring in wearable
devices. It should be noted that the MISPT uses the signal in-
formation from the first to the current frame to compute the HR
estimate at the current frame. However, for deploying MISPT
for continuous monitoring of HR from the PPG data, spectrum
of a fixed set of previous (buffer) frames can be used instead of
the entire signal up to the current frame. Detailed investigation
is required to determine the optimal buffer size. Investigation
is also required to demonstrate the robustness of the proposed
MISPT approach on data collected in free-living condition. It is
known that the gait on treadmill is typically different from free
walking [29]. However, the proposed approach does not exploit
any pattern in the PPG or accelerometer data due to treadmill
gait. Hence, it is expected that the performance of MISPT on
data from free-living condition would be similar to the ones re-
ported in this work.

3The runtime values are reported by executing MISPT using the
MATLAB2014b in a desktop computer with Intel i7 64-bit processor and 8 Gb
RAM.
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