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Abstract

Perception of 3D object properties from 2D images forms
one of the core computer vision problems. In this work, we
propose a deep learning based system that can simultane-
ously reason about 3D shape as well as associated proper-
ties (such as color, semantic part segments) directly from a
single 2D image. We devise a novel depth-aware differen-
tiable feature rendering module (DIFFER) that is used to
train our model by using only 2D supervision. Experiments
on both the synthetic ShapeNet dataset and the real-world
Pix3D dataset demonstrate that our 2D supervised DIFFER
model performs on par or sometimes even outperforms ex-
isting 3D supervised models.

1. Introduction
The world we live in is composed of physical objects

with diverse shapes, sizes, textures, and surface informa-
tion. We, as humans, are capable of processing the 2D im-
age of an object to decipher the underlying 3D structure.
Our 3D perception capabilities go beyond mere reconstruc-
tion of structural information. We are highly adept at cap-
turing a variety of other properties such as surface normals,
texture and part information.

Like humans, machines require 3D perception to per-
form real world tasks. The 3D perception of machines needs
to go beyond just shape reconstruction from 2D images.
For instance, semantic understanding of the perceived 3D
object is particularly advantageous in tasks such as robot
grasping, object manipulation, etc. Further, the ability to
effectively colorize a 3D model has applications in creative
tasks such as model designing, texture mapping, etc. Thus,
an ideal machine would have the capacity to infer the three-
dimensional structure as well as associated features given a
single 2D image.

In this work, we aim to design a deep learning system
that can simultaneously predict 3D shape (in the form of
a point cloud) of an object while also predicting important
3D point characteristics such as color and part segmentation

labels. However, training systems capable of performing a
multitude of 3D perception tasks poses several challenges:
(1) 3D data required for training such systems is not easy
to acquire. There is a lack of large-scale ground truth 3D
annotations for in-the-wild images. Existing datasets with
accurate 3D annotations are either synthetically created [1]
or are captured in constrained environments requiring elab-
orate procedures using multiple sensors and scanners [17].
(2) Models trained on synthetic datasets do not generalize
well to the real-world images due to differences in the in-
put data distributions. These challenges necessitate learn-
ing techniques that rely on easily available 2D images as
supervision instead of 3D ground truth.

Utilizing 2D data as supervision for 3D perception net-
work requires a differentiable rendering module that can ef-
fectively propagate gradients from the rendered 2D image
back to the predicted 3D model. Since our task is to learn
both 3D structure and features, this module would need to
be generic enough to render any feature that is associated
with a 3D model. Towards this end, we design a depth-
aware feature expectation formulation, where 3D point fea-
tures are effectively rendered onto a 2D surface based on the
depth value of the corresponding points. Such a mechanism
allows us to obtain accurate and differentiable projections
of the predicted 3D features.

In summary, our contributions are as follows:
• We propose a differentiable point feature rendering

module named DIFFER to train single-view 3D point
cloud reconstruction and feature prediction networks
using just 2D supervision. Being depth-aware, DIF-
FER can effectively render a diverse set of features
such as color, part segmentation and surface normals,
thus enabling the training of 3D feature learning sys-
tems using weak 2D supervision.
• We benchmark our approach on both synthetic

(ShapeNet [1]) and real-world (Pix3D [17]) datasets.
Extensive quantitative and qualitative evaluations
show that DIFFER performs comparably or even better
than approaches that use full 3D supervision.
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2. Related Works
3D Reconstruction Existing approaches to 3D reconstruc-
tion from single-view images predominantly use full 3D
supervision. Voxel based methods predict a full 3D oc-
cupancy grid using 3D CNNs [4, 2, 20]. However, voxel
formats are information-sparse since meaningful structural
information is mainly provided by the surface voxels. 3D
CNNs are also compute heavy and add considerable over-
head during training and inference. More recent works
have introduced techniques for predicting unordered 3D
point clouds [3, 9]. Point clouds offer the advantage of
being information-rich, since points are sampled only on
the surface, and require lighter compute units for process-
ing. In this work, we compare against [3], which intro-
duced framework and loss formulations tailored for train-
ing point cloud generators using 3D ground truth supervi-
sion, and obtained superior single-view reconstruction re-
sults compared to volumetric approaches [2]. We show
competitive performance using only 2D data as supervi-
sion. Works such as [21, 18, 19, 23, 8, 12, 5, 7] explore
techniques for learning 3D reconstruction using 2D super-
vision such as silhouettes and depth maps. Yan et al. [21]
obtain 2D masks by performing perspective transformation
and grid sampling of voxel outputs. Tulsiani et al. [18] use
differentiable ray consistency to train on 2D observations
like foreground mask, depth and color images. Lin et al. [8]
pre-train a network by directly regressing depth maps from
eight fixed views, which are fused to obtain the point cloud.
This is followed by a network fine-tuning via a depth projec-
tion loss. The works of [12] and [5] project 3D point clouds
using a differentiable renderer to obtain 2D masks during
training. While existing differentiable point cloud render-
ing modules are able to render masks or depth maps, our
proposed module is capable of rendering arbitrary features
associated with the 3D model. Contrasting to [5], which
predicts color along with shape reconstruction, our network
jointly predicts shape, parts and color reconstruction and we
show quantitative results on all of them.

3D Feature Prediction 3D feature learning involves pre-
dicting 3D features such as semantics or color. Semantic
segmentation using neural networks has been explored by
several works [15, 13, 14, 6, 11, 10, 16]. [15] estimates
voxel occupancy as well as part labels for 3D scenes from
depth maps. [13, 14] introduce networks that perform point
cloud classification and segmentation. [10] train a network
that jointly estimates shape and part segmentation. While
these works require 3D part labels as ground truth, we show
competitive performance using only 2D part supervision.

3. Approach

We develop a deep learning framework for joint 3D point
cloud reconstruction and general feature prediction that uses

only 2D supervision. The predicted 3D point features can
be color (RGB), part segmentation labels or surface nor-
mals. To this end, we propose a novel depth-aware dif-
ferentiable renderer to obtain the corresponding 2D feature
projections from the 3D predictions of the network (Fig. 1).
The network training objectives for each feature are formu-
lated in the 2D domain. We extend the 2D mask projec-
tion formulation provided by Navaneet et al. [12] (CAP-
Net) to general feature projection of 3D point cloud from
a given viewpoint. Consider an input image I . We pre-
dict the 3D co-ordinates of point cloud P ′ ∈ RN×3 along
with k−dimensional features F̂ ∈ RN×k using an encoder-
decoder network (Fig. 1). Assuming the knowledge of in-
trinsic camera parameters and view-point v, a perspective
transformed point cloud P̂ = (x̂, ŷ, ẑ)∈RN×3 is obtained.
Let M̂v be the mask obtained by orthogonally projecting P̂
from view point v. Then the value of mask at pixel location
(i, j) is obtained as

M̂v
i,j = tanh

(
N∑
n=1

φ(x̂n − i)φ(ŷn − j)

)
, (1)

where φ(·) is an un-normalized Gaussian kernel. The above
differentiable rendering formulation is proposed in CAP-
Net [12] and has no occlusion reasoning. It can only be
used to perform mask supervision where self-occlusions do
not matter. Renderings of GT parts and color using CAPNet
shown in Fig. 2 indicate that the feature projections do not
account for occlusions. This makes it unsuitable for training
general 3D feature prediction networks.
Depth-aware general feature projection The above pro-
jection formulation (Eq. 1) is independent of the depth of
the points. However, for a general feature associated with
the points, their relative depths determine which of the
points is projected to a particular 2D location. For a given
2D location, the point with the lowest depth value would be
visible while the rest of the points in the same line of sight
would be occluded and hence, not projected onto the 2D
map. Thus, it is necessary to obtain a depth map in order to
project any feature value. While the points corresponding to
the minimum depth values can directly be used to acquire
the depth maps, the resulting method is not differentiable.
In this work, we propose a differentiable approximation to
obtain the depth values and subsequently project features
from a point cloud in a differentiable manner. Let D̂n,v

i,j be
the depth value obtained at pixel-location (i, j) by project-
ing nth point (Eq. 2) with viewpoint v:

D̂n,v
i,j = ψ(x̂n − i)ψ(ŷn − j)ẑn (2)

The kernel function ψ for depth projection is defined as:

ψ(k) =

{
1, −r ≤ k ≤ r
10, elsewhere

(3)
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Figure 1: DIFFER module for feature reconstruction. We propose a differentiable point feature renderer for reconstructing point clouds
with associated features from just a single input image. (a) The network predicts features like part-segmentation and point color in addition
to the 3D shape. DIFFER is used to obtain 2D projection maps(eg. mask, color image and part-segmentation map) from the predicted point
cloud. The network is trained with 2D supervisory data. (b) DIFFER predicts projection probability values as a function of depth for each
point in the prediction. The 2D feature map is obtained as an expectation of point feature values.

where r is the width of the kernel, referred hereafter as
“well-radius”. The kernel determines the points in the vicin-
ity of the projected pixel and the point with the least depth
amongst them is selected as the point to be projected. The
well-radius r regulates the smoothness and accuracy of the
depth maps. While a low value results in sparse projections,
a very high value results in inaccurate outputs.

We use the depth values obtained by the above formu-
lation to project any general 3D point feature onto 2D im-
ages. We define the probability Q̂n,vi,j of the point n being
projected on to the pixel (i, j) as:

Q̂n,vi,j = exp
( 1

D̂n,v
i,j

)/ N∑
k=1

exp
( 1

D̂k,v
i,j

)
(4)

The probability of a point being projected depends on the
depth of the point and the presence of other points in the
same line-of-sight. Lower the depth value of a point, higher
is its probability of projection. To model this, we consider
the probability of projection to be inversely proportional to
the depth value of the point. The softmax normalization
approximately models the influence of other points. Once
the above point projection probabilities are determined, the
final feature projection at a specific pixel is obtained as the

expected feature value at that location, X̂v
i,j =

N∑
n=1

Q̂n,vi,j F̂n.

We refer to this differentiable feature renderer as ‘‘DIF-
FER’’. In the case of DIFFER, a simple depth-aware ren-
dering (Eqns. 2- 4) can mimic complex occlusion reason-
ing resulting in an effective differentiable renderer for gen-
eral feature projection. Fig. 2 shows that DIFFER part/color
projections closely resemble GT parts/colors demonstrating
the importance of depth-aware rendering for feature pro-
jection. The above formulation can be extended to other
general features. We show experimental results on surface
normal prediction in the supplementary.

 CAPNet  DIFFER    GT

CAPNet  DIFFER    GT CAPNet  DIFFER    GT

Figure 2: Importance of depth-aware rendering: Projected part
segmentation and color maps for CAPNet [12] and DIFFER.

3.1. Loss Formulation

Mask Projection The per-pixel binary cross-entropy loss
between ground truth mask Mv and projection M̂v from
view-point v is obtained as:

LvM =
1

hw

∑
i,j

−Mv
i,j logM̂v

i,j − (1−Mv
i,j)log(1− M̂v

i,j)

(5)
where h,w are the height and width of the projected image
respectively.

Color Projection The point cloud color is represented as
a three-channel RGB value associated with each point, i.e
P ′ = (x,y, z, r, g, b). Once the network predicts the 3D
point locations along with their color, we use the DIFFER
module to project 3D point colors on to the 2D image grid.
We use the mean squared error between the ground truthCv

and the projected color image, Ĉv , as a loss function to train
our network:

LvC =
1

hw

∑
i,j

||Cvi,j − Ĉvi,j ||2 (6)

Semantic Part Projection A part label is associated with
every point in the point cloud. The label values are discrete,
and hence cannot be directly used to obtain projections. We



represent the labels using one-hot encoding and our 3D net-
work is trained to predict the probability of a point belong-
ing to each of the classes. We treat the probability values as
features and project them onto 2D using DIFFER. During
inference, the label with the maximum probability is treated
as the prediction. We use pixel-wise softmax cross-entropy
loss between the ground truth Sv and the projected class
probabilities Ŝv for the training. The total loss is obtained
as a combination of feature and mask loss averaged over r
different views, Ltot = (1/r)

∑r
v=1(LvM + λLvfeat) where

Lvfeat can be eitherLvC orLvS and λ is the relative weight for
feature loss. Details on loss formulation for surface normal
prediction are provided in the supplementary.

4. Experiments
4.1. Implementation Details

We use four random viewpoint projections (for 2D super-
vision) in all the experiments. The viewpoints are randomly
selected as in [12]. We consider three object categories -
chair, car and airplane - and set the variance of the Gaussian
kernel in Eq. 1 to [0.4, 0.4, 0.1] and depth well radius r in
Eq. 3 to [1.0, 1.0, 0.75] respectively. The weight for feature
loss, λ, is set to 1. We use Adam optimizer with a learning
rate of 0.00005 to train the network. Network architecture
details are provided in the supplementary.

4.2. Evaluation Methodology

Reconstruction We evaluate 3D reconstruction per-
formance using two distance metrics – Chamfer dis-
tance and Earth Mover’s Distance (EMD). Chamfer dis-
tance between two point clouds P ′ and P is defined
as dChamfer(P

′, P ) =
∑
α∈P ′ minβ∈P ||α− β||22 +∑

α∈P minβ∈P ′ ||α− β||22. A low Chamfer error indi-
cates more faithful reconstructions. EMD between two
point sets P ′ and P is given by: dEMD(P

′, P ) =
minφ:P ′→P

∑
α∈P ′ ||α − φ(α)||2 where φ : P ′ → P is

a bijection from P ′ to P . Since it enforces a point-to-point
mapping between the two sets, EMD also measures unifor-
mity in point predictions. The ground truth point cloud is
obtained by randomly sampling 16,384 points on the sur-
face of the object and performing farthest point sampling to
obtain 1024 points. For computing the metrics, we normal-
ize both the ground truth and predicted point clouds within
a bounding box of length 1 unit. We report Chamfer and
EMD metrics after scaling them by 100.

Part Segmentation We formulate part segmentation as a
per-point classification problem. Evaluation metric is mIoU
on points. For each shape of category c, we calculate the
shape mIoU as follows: For each part type in category c,
we compute IoU between ground truth and prediction. If
the union of ground truth and prediction points is empty,
then we count part IoU as 1. We then average IoUs for
all part types in category c to get mIoU for that shape.

Since there is no correspondence between the ground truth
and predicted points, we compute forward and backward
mIoUs, before averaging them out to get the final mIoU as
follows: mIoU(Pc, P

′
c) = 1

2C

∑
i

Nii∑
j Nij+

∑
j Nji−Nii

+

1
2C

∑
i

Ñii∑
j Ñij+

∑
j Ñji−Ñii

where Nij is the number of

points in category i in Pc predicted as category j in P ′c for
forward point correspondences between Pc and P ′c. Simi-
larly Ñij is for backward point correspondences. C is the
total number of categories.

Color Prediction Similar to part-segmentation, we con-
sider the average of forward and backward squared Eu-
clidean distance between the predicted and ground truth
RGB values by obtaining point correspondences.

4.3. Baselines
We compare our approach against state-of-the-art 3D re-

construction and feature prediction networks that utilize full
3D data as supervision. We consider two baselines:
PSGN [3]+PointNet [13]: We train two separate networks
for reconstruction and feature prediction. PSGN is trained
to predict the ground truth point cloud, and PointNet is
trained to predict features given a ground truth point cloud.
During inference, the predicted point cloud by PSGN is
passed through PointNet to obtain features.
3D-PSRNet [10]: We train a single network to perform both
structure and feature prediction. Since there is no corre-
spondence between the ground truth and predicted points,
we compute forward and backward feature losses between
the two sets [10].

For color prediction, it would not be possible to first ob-
tain reconstructions and then independently regress the col-
ors for them since color is dependent on the input image.
Hence, we compare only against 3D-PSRNet, which jointly
regresses shape and color.

4.4. Part Segmentation

Dataset We train all our networks on synthetic models
from the ShapePFCN dataset [6] which consists of part seg-
mented ground truth meshes from ShapeNet [1]. To obtain
2D ground truth part segmentations, we render the mesh
label information and threshold the rendered images to ob-
tain the ground truth part segmented images. The corre-
sponding part annotated ground truth point clouds are taken
from [22]. We use the same train/test split provided by [6]
to train category-specific models in all our experiments.

Results Table 1 presents the results on the ShapePFCN
dataset [6] with comparison against the 3D-supervised base-
lines PSGN [3]+PointNet [13] and 3D-PSRNet [10]. We
note that we perform comparably or sometimes even better
than the baselines that are trained with full 3D supervision.
Fig. 3 shows qualitative results. We observe that we are
better able to capture the overall shape and different parts



Category Metric
PSGN [3]

+ PointNet [13]
3D-PSRNet

[10] DIFFER

Supervision 3D 3D 2D

Chair
Chamfer ↓ 8.15 8.06 9.10

EMD ↓ 11.49 11.80 13.49
mIoU ↑ 75.29 75.98 73.21

Car
Chamfer 5.29 5.26 5.49

EMD 6.52 5.97 5.59
mIoU 58.43 61.05 59.67

Airplane
Chamfer 4.21 4.29 4.79

EMD 6.66 6.23 7.42
mIoU 65.38 66.89 67.26

Mean
Chamfer 5.88 5.87 6.46

EMD 8.22 8.00 8.83
mIoU 66.37 67.97 66.71

Table 1: Reconstruction and Part Segmentation metrics on
ShapePFCN dataset [6]. DIFFER performs comparably to the
baselines that use full 3D supervision.

present in the input image (back of chairs, parts of cars,
wings of airplanes). Our reconstructions also display uni-
formity in points.

4.5. Color

Dataset We use the ShapeNet dataset [1] for colorized
point cloud reconstruction. Points are sampled on the mesh
surfaces and the points are associated with the correspond-
ing face colors. Input image rendering is performed as in the
case of part segmentation. The images from various views
form the 2D ground truth data.

Results Table 2 provides quantitative comparison with
the jointly trained 3D supervision based model. We ob-
serve that both the reconstruction and color prediction per-
formances of DIFFER are comparable to that of 3D super-
vised 3D-PSRNet. Fig. 4 provides qualitative results for
colored point cloud reconstruction. We obtain predictions
that match the input image features. Clear part distinctions
are observed, for e.g., window panes and wheels in cars are
clearly identifiable with a different color from that of the
body. While 3D-PSRNet, being a 3D supervised network,
obtains better reconstructions, DIFFER has higher visual
color correspondence to the input image.

Pix3D To show the adaptability of our approach, we also
provide results on the real world Pix3D dataset[17]. A ran-
dom 80%-20% train-test split is utilized. PSGN-joint[3] is
initially trained on the ShapeNet dataset and is fine-tuned on
the 2D data using DIFFER. To account for the difference in
the input image domains of ShapeNet and Pix3D, we train
the baseline network by overlaying the synthetic images on
random natural background images [18, 12]. In Table 3, we
observe significant boost in the reconstruction performance
compared to the baseline. The ability of DIFFER to train

Category Metric 3D-PSRNet [10] DIFFER

Chair
Chamfer ↓ 7.76 8.44

EMD ↓ 9.47 14.38
RGB-L2 ↓ 0.12 0.19

Car
Chamfer 4.81 5.05

EMD 4.35 4.79
RGB-L2 0.20 0.26

Airplane
Chamfer 4.18 5.99

EMD 5.69 8.47
RGB-L2 0.15 0.19

Mean
Chamfer 5.58 6.49

EMD 6.50 9.21
RGB-L2 0.16 0.21

Table 2: Reconstruction and Color metrics on ShapeNet [1].
DIFFER performs comparably to the baseline using full 3D super-
vision in terms of Chamfer distance.

Approach Chamfer Forward Backward EMD

PSGN Joint [3] 16.05 7.5 8.55 16.8
DIFFER 14.29 6.98 7.31 14.46

Table 3: Reconstruction metrics on Pix3D [17]. Note that it is
not possible to report RGB metrics due to absence of GT 3D data.

Category Chair Car Airplane Mean

CAPNet [12] 9.64 6.71 6.58 7.64
DIFFER 9.55 6.38 5.87 7.27

Table 4: Chamfer metrics on ShapeNet [1]. Single view su-
pervision based reconstruction performance. Addition of depth in
DIFFER improves reconstruction.

using 2D color images facilitates the effective use of such
real world datasets.

4.6. Role of Depth in Reconstruction

While we predict depth values for each point when pro-
jected at each pixel (Eq. 2), the minimum depth across all
points for each pixel would yield the depth maps. Such
depth maps can be used for supervision to obtain better re-
constructions. We consider single-view supervised recon-
struction with and without depth supervision. Since mini-
mal information from hidden regions is available to the net-
work, reconstruction quality suffers with mask loss alone
(CAPNet [12]). Quantitative metrics in Table 4 and qual-
itative results (in supplementary material) suggest that ad-
ditional depth supervision results in improved reconstruc-
tion ability. The depth supervision in DIFFER helps elim-
inate/reduce problems like presence of spurious points in
concave regions and incorrect estimation of depth in thin
objects like airplane.
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Figure 3: Qualitative results for part-segmented reconstruction on ShapePFCN [6]. While the density of points in DIFFER outputs suffers
in quality, there is improved correspondence in shape to the input image. The network is better able to reconstruct and predict parts like
chair handles and legs, whereas the baseline tends to predict parts not present in the input.

GT DIFFERInput
Supervision          3D      2D

3D-PSRNet

GT DIFFERInput

Supervision          3D      2D

3D-PSRNet

Figure 4: Qualitative results for color prediction on ShapeNet
dataset [1]. We are able to accurately reconstruct the 3D shape of
the model, while simultaneously capturing the color information
in the input image. DIFFER has a higher visual correspondence in
color to the input compared to 3D supervised 3D-PSRNet [10].

4.7. Influence of Depth Well Radius

We observe the DIFFER projections for different radii r
of the depth well in Eq. 3. Lower values of r produce sparse

    GT   r = 0.25    0.5    0.75     1.0     1.25     1.5

a) b)

Figure 5: Projected part segmentations for different radii. We
observe that lower values of r produce sparse projection maps with
‘holes’, while those higher values occupy larger areas. We set r to
an optimal value so as to fill up holes while retaining finer parts.

projection maps with ‘holes’, while higher values result in
projections with larger areas (Fig. 5). We set r to an optimal
value so as to fill up ‘holes’ while retaining finer parts.

5. Conclusion

In this work, we tackle the problem of jointly learning
3D structure and associated features from a single input im-
age using weak multi-view 2D supervision. To this end,
we develop a depth-aware differentiable feature renderer
(DIFFER), which is used to train our model using only 2D
data such as depth, color and part annotations as supervi-
sion. Through extensive quantitative and qualitative evalua-
tion on ShapeNet and Pix3D datasets, we show that our ap-
proach performs comparably or sometimes even better than
existing 3D supervised methods.
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