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ABSTRACT

Person re-identification involves retrieving correct matches
for a target image (query) from a set of gallery images, while
video based re-identification extends this to the case of query
and gallery videos. Typical video-based re-id methods ig-
nore the temporal evolution of the intermediate representa-
tions of the video sequences. We propose a novel loss func-
tion, termed rank loss, to explicitly ensure that the learnt rep-
resentations achieve enhanced performance and robustness as
the sequence progresses and that better intermediate repre-
sentations result in an improved final representation. Exper-
iments indicate that the addition of rank loss indeed helps
in improving the re-id performance while achieving perfor-
mance comparable to state-of-the-art approaches.

Index Terms— Person re-identification, Rank loss, At-
tention, Recurrent networks, Video re-identification

1. INTRODUCTION

Person re-identification (re-id) is the task of finding a suit-
able match for a probe image/video of a person from a set
of gallery images/videos. It has important applications in
the field of video surveillance, multi-camera person recog-
nition and tracking. The task of re-id proves to be interest-
ing and challenging due to large variations in appearance,
pose and illumination across camera fields-of-view. Exist-
ing works in person re-id can broadly be classified into three
groups - feature learning based [1, 2, 3, 4], metric learning
based [5, 6, 7, 8, 9] and deep learning based where feature
and metric are jointly learnt [10, 11, 12, 13]. In video based
person re-id, instead of comparing single images per target,
a sequence of images are considered for each person in the
probe and gallery sets. Typically, the individual features of
the images in the sequence are obtained and are fused to ob-
tain a single representation for the entire video [12, 14, 15].
The problem then reduces to that of traditional metric learn-
ing in person re-id. A number of functions have been tried
towards aggregation of features. Zheng et al. [12] use mean
and max pooling of features as the fusion function. In [14],
McLaughlin et al. use a recurrent neural network (RNN) to
learn a fusion function, while Yan et al. [15] use LSTM, a
variant of RNN, to learn a more selective composition.

In most classical deep metric learning approaches to
video-based person re-id, the attempt has been to obtain an
optimal representation after aggregating all the observations
in each sequence. Hence, only the final representation is
utilized during training the network while the temporally
intermediate representations are ignored. A sequence of
observations from a target is expected to contain more infor-
mation on the target’s appearance than that contained in any
of its subsets. Thus an ideal fusion function, while combining
these observations in a sequence, would yield better fused
representations as more and more observations are added to
this sequence. Our objective in this work, therefore, is to
model the fusion function such that it not only is capable of
generating an optimal final representation after fusion of all
features, but also learns to yield monotonic improvements at
each intermediate representation. In the training stage, this
desired property must be explicitly enforced through a novel
and advanced loss function. However, designing objective
functions to obtain such intermediate fused representations
is non-trivial, since there is no correspondence between the
respective sub-sequences.

We propose a novel loss formulation for the task of video-
based person re-id, called rank loss, to ensure that the fused
representation improves in quality as more information is
added, while preventing any degradation due to adverse
frames. The network is penalized if, upon the inclusion
of a new frame, the fused representation is worse off than any
of the previous fused representations. To ensure that the net-
work is not wrongly penalized when a frame with relatively
low new information or spurious content is input, a residue
based temporal attention network is employed. This helps in
enforcing the rank loss on just the relatively clean frames. We
demonstrate that the proposed loss, along with the attention
network, helps in obtaining a more robust representation for
a video and demonstrate that the proposed training strategy
helps in improving the retrieval performance.

2. APPROACH

Let {si1,j , si2,j , . . . , siT,j} ∈ Sij be the jth input image se-
quence of person identity i. A convolutional neural network
is employed to extract features from the individual frames of
the sequence. Let {xi1,j , xi2,j , . . . , xiT,j} be the corresponding



Fig. 1: Overview of proposed approach. Individual frame features are extracted using a CNN. The attention network calculates the residual
feature and provides importance scores for each frame. The CNN features are multiplied by attention weights and are then fused using a GRU.
Rank loss is applied on the fused representations at every time step, with the circle size indicating weight of the loss at each step. Triplet loss
is enforced only on the final representation.

outputs of the convolutional network.

2.1. Temporal Feature Fusion

In order to obtain a combined representation for all the in-
dividual frames in the video, temporal pooling is necessary.
Unlike simple functions like mean and max pooling which ig-
nore the sequence ordering, we desire a fusion function which
can model the temporal evolution of the sequence, while be-
ing able to handle input sequences of arbitrary length. We em-
ploy gated recurrent unit (GRU), a popular recurrent network
variant, to achieve this (Fig. 1). The GRU is used to transform
the sequence of CNN features {x1, x2, . . . , xT } (the identity
and video indices are dropped for notational ease) from the T
individual frames to a corresponding sequence of fused rep-
resentations {f1, f2, . . . , fT }. This is achieved by obtaining a
lower dimensional embedding for the input feature, and com-
bining the embedding with the existing state representation
of the GRU. Specifically, the following set of transformations
are applied at each index t of the sequence:

rt = σ(Wrxxt +Wrhht−1 + br) (1a)
zt = σ(Wzxxt +Wzhht−1 + bz) (1b)
st = tanh(Whxxt +Whh(ht−1 � rt) + bh) (1c)
ht = (1− zt)� ht−1 + zt � st (1d)

Here, � represents element-wise multiplication, σ repre-
sents the sigmoid function. We consider ht as the pooled
feature representation ft for the input feature sequence
{x1, x2, . . . , xt} seen until that point. Internal gating of
the new input and its transformed embedding, represented
by the intermediate transformations rt, st and zt, allow the
network to selectively update its internal state representation.
The network can learn to explicitly consider only the relevant

information and ignore the rest. Note that the subscripted
W ’s and b’s are shared across all the sequence indices and
form the trainable parameters of the GRU.

We employ triplet loss to train the network. Consider an
anchor sequence Sij of identity i. Any other sequence with
the same identity i is considered a positive sequence while
the rest of the sequences, with any other identity, are termed
negative sequences. The triplet loss tries to ensure that the
distance between the anchor and the positive sample is less
than the distance between the anchor and the negative sample
by a pre-fixed margin. The loss is applied at the final index T
of the GRU, with anchor, positive and negative features being
f iT,j , f

i
T,k and fnT,l respectively:

LtriT = max
m 6=i
k 6=j

(0, d(f iT,j , f
i
T,k)− d(f iT,j , fnT,l) +m) (2)

Here, d(.) is the Euclidean distance metric and m is the pre-
fixed margin. In the training stage, the positive and neg-
ative samples are chosen using hard-mining within a mini-
batch [16].

2.2. Rank Loss

Given the input feature sequence {xi1,j , xi2,j , . . . , xiT,j}, the
GRU is used to obtain the fused sequence of representations
{f i1,j , f i2,j , . . . , f iT,j}. While the triplet loss aims to improve
the final fused feature at index T , we aim to learn a fused
representation f it,j at time index t such that it is better than
all the fused representations of indices preceding it, i.e, f it,j
must be a more holistic representation of the sub-sequence till
t than any of the representations in {f i1,j , f i2,j , . . . , f it−1,j}.

To achieve such a desirable monotonic improvement in
the learnt intermediate representations, we propose the fol-



lowing novel loss function on the outputs of the GRU:

Lpt =
∑
i,j

max
τ∈{1,2,...,T}
l∈{1,2,...,Ki}

(0, d(f it,j , f
i
τ,l)− dit,p) (3a)

Lnt =
∑
i,j

max
τ∈{1,2,...,T}
l∈{1,2,...,Kk}

k 6=i

(0, dit,n − d(f it,j , fkτ,l)) (3b)

Lrankt = Lpt + Lnt (3c)

Here, Ki is the total number of sequences belonging to
identity i, T is the maximum sequence length and the indices
k and l are chosen using hard-mining. dit,p and dit,n are de-
fined as follows:

dit,p = min
l∈{1,2,...,Ki},l 6=j

d(f iτ,j , f
i
r,l) (4a)

dit,n = max
l∈{1,2,...,Kk},k 6=i

d(f iτ,j , f
k
r,l) (4b)

where τ ∈ {1, 2, . . . , t − 1}, r ∈ {1, 2, . . . , T}. Lpt and Lnt
correspond to the loss on positive and negative samples re-
spectively. As in the case of triplet loss, the positive and
negative samples are obtained using hard-mining. Thus, at
a give time index t, dit,p is the minimum distance between
any of the previous fused features till t and the correspond-
ing hard-mined positive sample. Lpt tries to ensure that the
maximum distance between the current feature and the posi-
tive sequence features is less than dit,p. Similarly, dit,n is the
maximum distance between any of the previous fused features
and the corresponding negative sample. Lnt is used to enforce
the current feature to be farther from the negative sample than
dit,n. The sum of the two loss functions, termed as rank loss,
helps in obtaining an improvement in the fused representation
with additional information.

The total loss for training is a combination of triplet and
rank loss averaged over all time indices. Within a sequence,
more weightage is given to rank loss at later time indices.
Specifically, we use a linear weighting scheme, with the
weights ranging from zero to one, i.e., γt = t/T . The final
loss equation is as follows:

L = LtriT + λ

T∑
t=1

γtLrankt (5)

2.3. Temporal Attention

While the rank loss expects the fused representation to im-
prove as the sequence progresses, the new inputs need not
necessarily provide helpful information. The additional
frames might be highly correlated with the currently seen
frames, the region of interest might be occluded or the frame
could include distractions like the presence of additional per-
son/s. In such situations, it would be wrong to expect the

network to improve upon the performance of the existing
representation. Thus, to alleviate this issue, an attention net-
work is used to determine the importance of the input frame.
Instead of the feature corresponding to just the current frame,
a weighted average of the sequence till time t is used as the
input to the GRU at time t. The weights for the feature of
each frame are learnt through the temporal attention network.
Let {wi1,j , wi2,j , . . . , wit,j} be the weights of the input se-
quence till time t. The attention network is modelled as a
multi-layer perceptron (MLP) with two hidden layers, with
ReLU activation as the non-linear function.

rit,j = xit,j −
1

T

T∑
τ=1

xiτ,j (6a)

wit,j = Watt(relu(Uattrit,j + b1
att)) + b2att (6b)

where Watt, Uatt, b
1
att, b

2
att are the weights and biases of the

network. Note that the weights are fixed for all time indices
of the sequence (Fig. 1). The residual feature is used for at-
tention calculation. It is obtained as a difference between the
current input feature and the average feature of all time steps
(Eq. 6a). The residual denotes the extent of additional in-
formation provided by the frame and the attention network
determines whether the additional information is beneficial.
We find this modification to be crucial to effectively learn the
attention weights. The input to the GRU at time step t is now
given by: x̂it,j =

1∑t
k=1 w

i
k,j

∑t
τ=1 w

i
τ,j ∗ xiτ,j

3. EXPERIMENTS

We perform experimental analysis on two popular video re-id
datasets, namely, PRID-2011 [17] and MARS [18]. We con-
sider a Resnet-50 architecture based feature extraction net-
work and use GRU for temporal feature fusion. Triplet loss is
used for training the network, without the additional attention
module or rank loss. We refer to this network, trained only
on triplet loss, as our baseline network. To validate our con-
tributions, we train the same model with an additional rank
loss and an attention module which is referred to as base-
line+attn+rank loss. We consider rank-1 accuracy and mean
average precision (mAP) for evaluation.

3.1. Implementational Details

We use a fully connected layer after the Resnet-50 network to
reduce the embedding dimension to 512. Dropout with rate
0.5 is used in this layer. The GRU hidden state size is set to
128 and 512 respectively for PRID-2011 and MARS datasets.
The networks are trained end-to-end for 15000 iterations with
Adam optimizer, with an initial learning rate of 0.0001, and
β1 and β2 parameters set to 0.9 and 0.999 respectively. Learn-
ing rate scheduling is performed as in [16].



Table 1: Comparison of rank-1 accuracies and mAP for the baseline
and proposed approaches on MARS dataset.

Approach Rank-1 mAP
Baseline 75.51 63.51
Baseline + Attn 76.06 63.20
Baseline + Attn + Rank Loss 77.27 64.76

3.2. Results on MARS Dataset

MARS [18] dataset has tracklets from six cameras with 1261
identities appearing in a minimum of two cameras. There are
625 identities and 8298 tracklets in the train set while the test
set consists of 636 identities and 12180 tracklets. Table 1
provides the quantitative comparison of the baseline with the
proposed variants. We observe that inclusion of attention in-
dividually helps in slightly improving the rank-1 accuracy,
however, the best performance is obtained when the attention
network is combined with rank loss based training, empha-
sizing the need for such an approach. Table 2 provides com-
parison with the existing approaches. We outperform most
of the approaches in Rank-1 and all the approaches in mAP.
Note that several existing approaches, like [18], employ met-
ric learning atop their trained model to significantly boost the
performance. The approaches also utilize complex modules
apart from the basic CNN feature extractor to improve the
performance. However, the aim of our work is not to compete
against such complex approaches, but to show that the rank
loss trained model outperforms the baseline. The proposed
training strategy can easily be integrated with the existing ap-
proaches to potentially enhance their retrieval performance.

3.3. Results on PRID-2011
PRID-2011 [17] dataset consists of 400 image sequences
for 200 identities from two non-overlapping cameras. The
sequence lengths range from 5 to 675 frames. Following
the protocol in [19], 178 sequences, each with more than 21
frames are considered in our experiments. Since training a
deep neural network on such a small dataset might result in
overfitting, we use the network pre-trained on MARS and
fine-tune it on PRID-2011 for 5000 iterations for both base-
line and our approach. Evaluation is done on 10 different
train and test splits and the averaged metrics are reported
(Table 2). We observe that the addition of rank loss clearly
improves the retrieval performance. We also outperform or
perform comparably to the existing approaches.

3.4. Role of Rank loss

Tables 1 and 2 provide quantitative evidence for the efficacy
of rank loss. Fig. 2 shows a plot of rank-1 accuracy as a func-
tion of time-step when the network is trained with and without
the rank loss. We observe an increasing trend for both the ap-
proaches with increase in the number of input images. The
rank loss trained model consistently outperforms the base-
line, indicating improved intermediate representations, with
the difference between the approaches increasing at the higher
time-indices where more images are fused.

Table 2: Comparison of rank-1 accuracies and mAP on MARS and
PRID-2011 datasets.

Approach PRID-2011 MARS
Rank-1 Rank-1 mAP

STA [20] 64 - -
AFDA [21] 43 - -
RFA [15] 58.2 - -
CNN+XQDA [18] 77.3 68.3 49.3
CNN-RNN [14] 70 - -
ASTPN [22] 77 - -
IDE+XQDA [23] - 65.3 47.6
MSCAN+Euclidean[24] - 78.28 61.62
Baseline + Attn 71.46 76.11 63.20
Baseline + Attn + R-Loss 75.17 77.27 64.76

Fig. 2: Rank-1 accuracy as a function of time-step. Training with
rank loss achieves higher improvement over the baseline as the se-
quence progresses.

3.5. Role of Attention

Fig. 3 displays the learnt attention weights for some sample
sequences. We observe that the frames with occlusions and
those where some body parts are not visible are given a lower
score while those with clear views and discriminative features
obtain higher scores. For e.g., in row one, notice that the
weights decrease in the presence of an occlusion, and increase
again when the occlusion disappears.

Fig. 3: Example video sequence with the predicted attention weights
for each frame.

4. CONCLUSION

We considered the task of video based person re-identification.
A CNN and GRU were used for feature extraction and fusion
respectively. To improve the fusion as one observes more
frames of a sequence, a novel loss function called rank loss
was proposed. A residual input based attention network was
employed to determine the relative importance of an input
frame. Through extensive experiments on two video re-id
datasets, we validated the efficacy of the proposed attention
module and rank loss based training strategy. The proposed
approach outperforms the baseline on both the datasets.
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