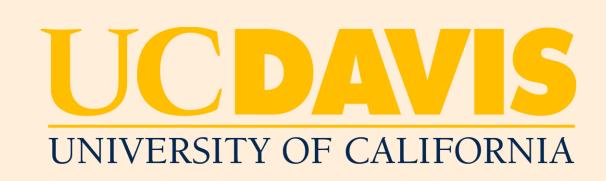
Constrained Mean Shift Using Distant Yet Related Neighbors for Representation Learning



UMBC

Navaneet K L^{1,*}, Soroush Abbasi Koohpayegani^{1,*}, Ajinkya Tejankar^{1,*}, Kossar Pourahmadi¹, Akshayvarun Subramanya², Hamed Pirsiavash^{1,2}

TEL AVIV 2022

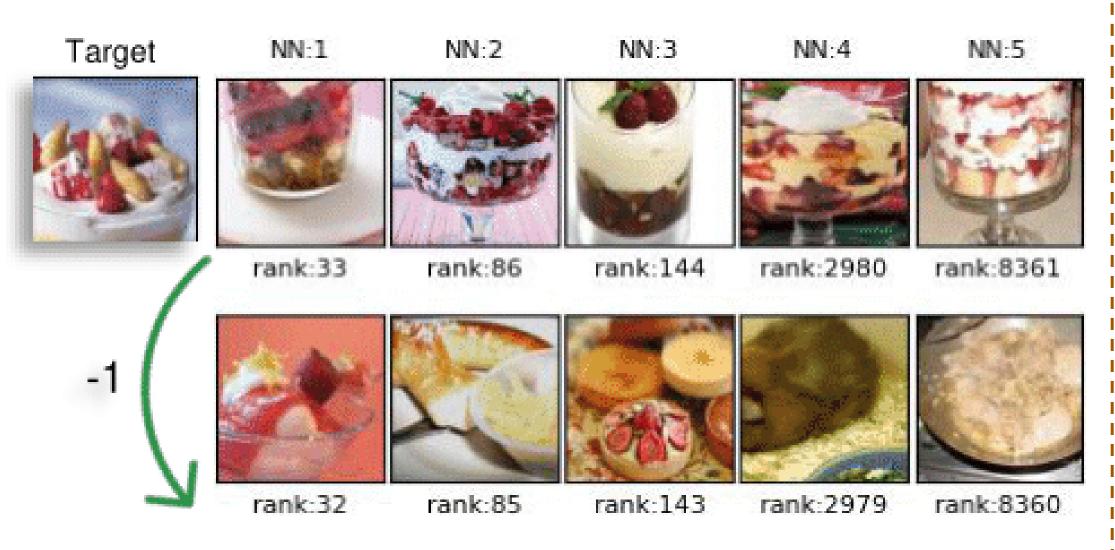
¹University of California, Davis ²University of Maryland, Baltimore County

* Equal contribution

Motivation

Goal: Learn rich representations through self- and semi-supervised learning for image classification.

- Recent works [MSF, NNCLR] pull embeddings of images towards their nearest neighbors (NN)
- However, by definition, NNs are close to the original image, so they may not provide a strong training signal.
- We want to find far away image embeddings that are semantically close to the original image.
- Our idea: constrain the NN search space using some extra knowledge so that NNs are far
 - Self-supervised: Augmentations from previous epoch
 - Semi-supervised: Pseudo-labels
 - Noisy Supervised: Ground-truth labels
 - Cross-modal learning: NNs in other modalities

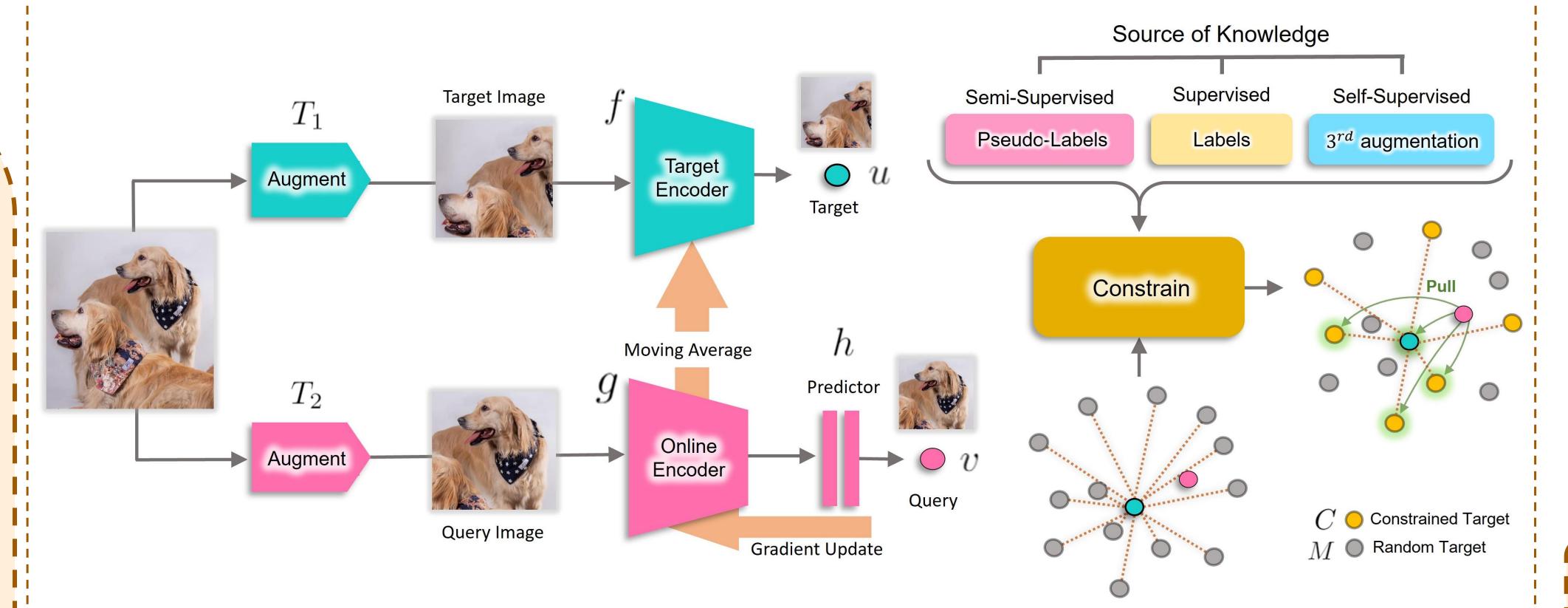


We show the rank of constrained NNs in unconstrained set. Nearby samples in unconstrained set (rank-1) are not semantically related.

Method

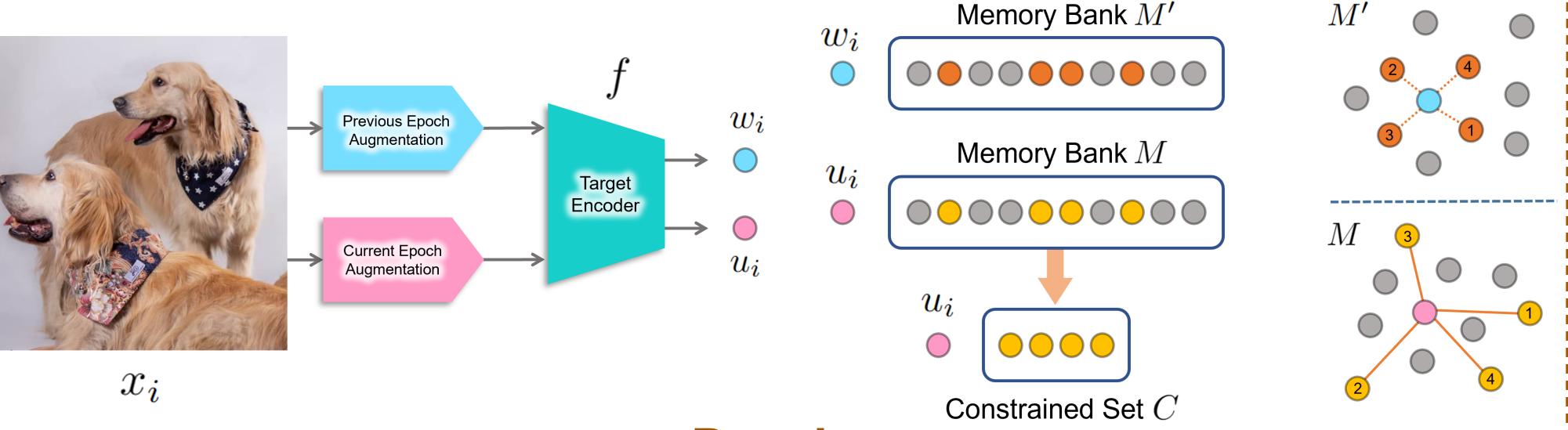
Semi- and Noisy Supervised:

- Define constrained set C as only those images that share the same ground-truth or pseudo-label as the original image
- Since we still search for NNs in C, we are robust to noise in set C
- It better preserves latent structure of categories.



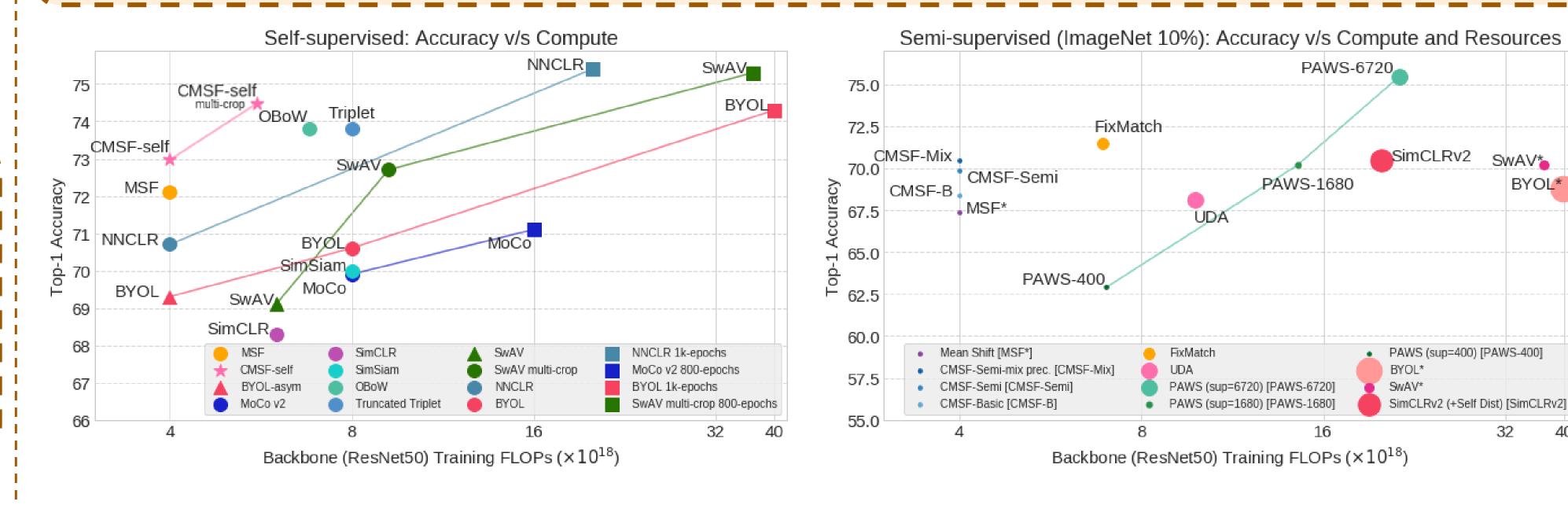
Self-supervised:

- First, find NNs of another augmentation, use corresponding new augmentations to define set C.
- Second, limit NN search space to images in set C only.
- For efficient implementation, cache the augmentation from the previous epoch in a new memory bank M'.



Results

- Compute and resource (GPUs) efficient.
- Outperforms all methods with similar compute on both self- and semi-supervised setups.

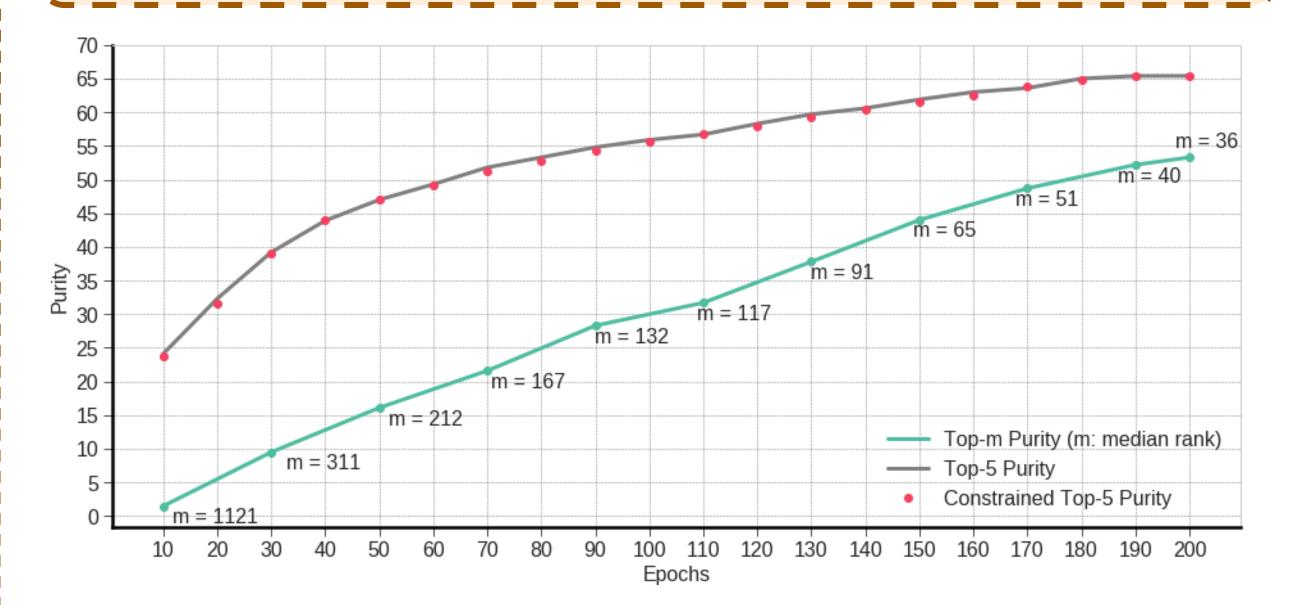


Results

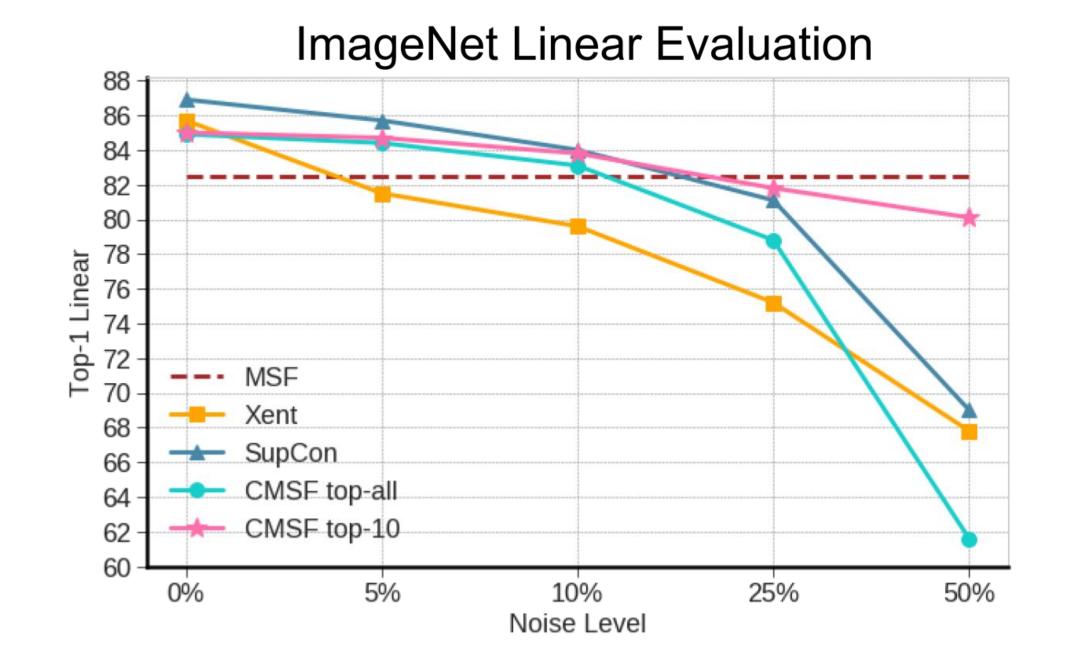
O PyTorch https://github.com/UCDvision/CMSF

Method	Ref.	Batch Size	Epochs	Sym. Loss 2x FLOPS	Multi-Crop Training	Top-1 Linear		20-NN
NNCLR[21]	[21]	4096	200	X	X	70.7	-	-
BYOL [27]	[16]	4096	200	✓	X	70.6	-	-
SwAV [11]	[16]	256	200	✓	✓	72.7	-	-
Truncated Triplet [67]	[<mark>67</mark>]	832	200	✓	X	73.8	-	-
OBoW [24]	[24]	256	200	X	✓	73.8	-	-
$CMSF_{self}$ (128K)	-	256	200	X	✓	74.4	62.3	66.2
MSF (1M) [37]	[37]	256	200	X	Х	72.4	62.0	64.9
MSF (256K)[37]	[37]	256	200	X	X	72.2	62.1	65.1
$CMSF_{self}$ (128K)	-	256	200	X	X	73.0	63.2	66.4

- Simply increasing number of NNs reduces purity
- While our method preserves high purity with far away NNs



Relatively robust to label noise in supervised setting



References:

[MSF] Koohpayegani *et al.* Mean shift for self-supervised learning. *ICCV'21* [NNCLR] Dwibedi *et al.* With a little help from my friends: Nearest-neighbor contrastive learning of visual representations. *ICCV'*21