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ABSTRACT

Large Language Models (LLMs) have recently gained popularity due to their
impressive few-shot performance across various downstream tasks. However,
fine-tuning all parameters and storing a unique model for each downstream task
or domain becomes impractical because of the massive size of checkpoints (e.g.,
350GB in GPT-3). Current literature, such as LoRA, showcases the potential of low-
rank modifications to the original weights of an LLM, enabling efficient adaptation
and storage for task-specific models. These methods can reduce the number of
parameters needed to fine-tune an LLM by several orders of magnitude. Yet, these
methods face two primary limitations: 1) the parameter reduction is lower-bounded
by the rank one decomposition, and 2) the extent of reduction is heavily influenced
by both the model architecture and the chosen rank. For instance, in larger models,
even a rank one decomposition might exceed the number of parameters truly
needed for adaptation. In this paper, we introduce NOLA, which overcomes the
rank one lower bound present in LoRA. It achieves this by re-parameterizing
the low-rank matrices in LoRA using linear combinations of randomly generated
matrices (basis) and optimizing the linear mixture coefficients only. This approach
allows us to decouple the number of trainable parameters from both the choice
of rank and the network architecture. We present adaptation results using GPT-
2 and ViT in natural language and computer vision tasks. NOLA performs as
well as, or better than models with equivalent parameter counts. Furthermore,
we demonstrate that we can halve the parameters in larger models compared to
LoRA with rank one, without sacrificing performance. Our code is available here:
https://github.com/UCDvision/NOLA

1 INTRODUCTION

Large pre-trained neural networks have exhibited remarkable generalization abilities across a diverse
range of downstream tasks in both natural language processing and computer vision, achieving
unprecedented data efficiency. For instance, large language models have demonstrated the capability
for few-shot generalization (Brown et al., 2020) across a variety of tasks, including translation,
question-answering, cloze tasks, and reasoning. Similarly, in DINOv2, (Oquab et al., 2023) showcase
how a large pre-trained ViT model (Dosovitskiy et al., 2020) with more than 1B parameters yields
superior all-purpose visual features for a variety of downstream benchmark tasks at both image
and pixel levels. Typically, these pre-trained large models are adapted to downstream tasks through
fine-tuning of their parameters. However, fine-tuning and storing the entire set of model parameters
for each task incurs a significant storage cost (e.g., 350GB for GPT-3). This challenge has spurred a
considerable body of recent works focusing on parameter-efficient fine-tuning of large models (Hu
et al., 2021; Xu et al., 2023; Dettmers et al., 2023; Chen et al., 2022; Sung et al., 2022b).

Inspired by the low intrinsic dimensionality of over-parameterized networks’ optimal parameters
(Li et al., 2018; Aghajanyan et al., 2021), (Hu et al., 2021) proposed a seminal hypothesis that the
change in weights during model adaptation/finetuning has a low “intrinsic rank," leading to the

* Equal Contribution.

1

https://github.com/UCDvision/NOLA


development of Low-Rank Adaptation (LoRA). In essence, LoRA enables the indirect training of a
linear layer in a neural network by optimizing the rank-decomposition matrices for the weight change
in these layers, resulting in a significant reduction in the number of parameters required for adaptation
(e.g., 10,000× parameter reduction for GPT3). Notably, LoRA has gained popularity, and various
extensions of this method have been proposed since its inception (Xu et al., 2023; Dettmers et al.,
2023). However, LoRA and its derivatives have three inherent limitations: 1) the parameter reduction
is lower-bounded by the rank one decomposition of linear layers, and 2) the number of parameters is
quantized since rank is an integer number, and 3) the number of parameters inherently depends on the
model’s architecture, i.e., the dimensions of the linear matrix, and the choice of rank. In this paper,
we introduce a method, denoted as NOLA, that reaps the same benefits as LoRA while addressing its
limitations. NOLA allows one to decouple the number of trainable parameters from both the choice
of rank and the network architecture, and it breaks the rank-one decomposition limit of LoRA.

NOLA is inspired by the recent work by (Nooralinejad et al., 2022), titled PRANC. In this work, we
reparameterize a neural network using a linear combination of pseudo-randomly generated weights.
Then, we indirectly train the network parameters by optimizing the linear mixture coefficients. This
approach results in a significant reduction in the total number of parameters needed to represent
the network. Unlike PRANC, our focus in NOLA is on reparameterizing the change of neural
weights for fine-tuning large models. More critically, unlike PRANC, NOLA incorporates the
invaluable insight from (Hu et al., 2021), which posits that the weight change during fine-tuning is
intrinsically low-rank. In essence, we utilize the rank-decomposition presented in LoRA but assemble
the rank-decomposition matrices as a linear combination of pseudo-random matrices (i.e., the ’basis’).
Optimizing the rank-decomposition matrices in NOLA is akin to determining the linear mixture
coefficients for the random matrices. This design allows us to decouple the number of parameters
from the shape of the linear layer and also from the rank choice. Furthermore, the low-rank constraints
offer substantial advantages in compute and memory footprint over the methodology proposed in
PRANC. Figure 1 illustrates the fundamental concept of NOLA.

Why Fewer Parameters Matter?

We envision a future where we must efficiently manage and transition between multiple Large
Language Models (LLMs), each tailored for specific tasks. This vision arises from the necessity for
LLMs customized with private data and/or the concept of crafting a universal LLM that can summon
customized LLMs as a versatile toolbox to tackle diverse tasks (Schick et al., 2023). However,
currently, customized LLMs demand substantial storage, and the process of switching between them
lacks efficiency due to large I/O operations. NOLA offers a more compact reparameterization solution
that can be stored effectively in GPU memory, allowing for on-demand reconstruction directly on the
GPU itself when a new task arises.

Note that while storing parameters in CPU memory is a cost-effective option, the process of trans-
ferring them from CPU to GPU incurs substantial time and power consumption. Moreover, this
data transfer relies on a shared resource (e.g., PCIe bus), which may experience congestion in busy
server environments. Therefore, optimizing model compactness to fit several of them within the
limited GPU memory proves advantageous in these scenarios. As an example, 1,000 customized
GPT-3 models using LoRA need almost 35GB of memory (assuming LoRA compresses it by a
factor of 10, 000×), which may not fit in the GPU memory along with the LLM model itself. Hence,
compacting it by an additional factor of 5 reduces it to 7GB, which can fit in the GPU memory,
leading to very efficient switching between the tasks.

Contributions. Our specific contributions in this paper are: 1) A novel reparameterization for
compressing task-specific large language models, denoted as NOLA. 2) NOLA decouples the
compression ratio from the rank and dimension of the weight matrix, unlocking higher compression
ratios while keeping most benefits of LoRA, including reduced memory and computation at training
time. 3) NOLA can be further improved by quantizing the coefficients and can be applied to other
architectures like CNNs. 4) Applied to PRANC, NOLA speeds it up and reduces its memory footprint.

2 METHOD

LoRA, short for Low-Rank Adaptation, is a widely embraced method for customizing a pre-trained
model, such as GPT, for a specific task. Instead of changing all parameters denoted as W within a
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Figure 1: Our Method (NOLA): After constraining the rank of ∆W by decomposing it to A×B,
we reparametrize A and B to be a linear combination of several random basis matrices. We freeze
the basis and W and learn the combination coefficients. To reconstruct the model, we store the
coefficients and the seed of the random generator which is a single scalar. NOLA results in more
compression compared to LoRA and more importantly decouples the compression ratio from the
rank and dimensions of W . One can reduce the number of parameters to 4 times smaller than rank=1
of LoRA which is not possible with LoRA due to rank being an integer number.

given layer, LoRA maintains the original pre-trained parameters W as a constant and learns a residual
adjustment ∆W to fine-tune the model for the new task. The resulting updated layer parameters
are then computed as W + ∆W . The core concept behind LoRA is to minimize the size of ∆W
by constraining its rank. In a more formal context, considering W ∈ Rm×n and ∆W ∈ Rm×n,
LoRA accomplishes this by reparameterizing ∆W as the product of two matrices, ∆W = A×B,
where A ∈ Rm×r and B ∈ Rr×n, with r representing the rank—a hyperparameter. By selecting a
relatively small rank (r << min(m,n)), LoRA efficiently reduces memory usage. This optimization
is achieved by storing A and B, which exhibit a significantly more compact representation than the
full ∆W . The resulting compression ratio is quantified as mn

r(m+n) . Unfortunately, this compression
rate is: 1) tied to the shape of the parameters m and n, and hence the model architecture, and 2) is
lower bounded by mn

m+n , i.e., r = 1.

In this paper, we introduce a novel reparameterization technique for ∆W that effectively decouples
the rank from the compression ratio, allowing for a compression ratio lower than mn

m+n , which
corresponds to r = 1 in the LoRA framework. To achieve this, we draw inspiration from PRANC
(Nooralinejad et al., 2022) and reparameterize matrices A and B to exist within a lower-dimensional
space defined by a set of randomly generated basis matrices. Formally, we express this as:

A =

k∑
i=1

αiAi , B =

l∑
j=1

βjBj (1)

where, Ai ∈ Rm×r and Bj ∈ Rr×n are random matrices generated by a Pseudo Random Number
Generator (PRNG) with a fixed seed. We subsequently learn A and B as linear combinations of
these predefined and frozen random matrices. Importantly, the random matrices themselves remain
constant, and we optimize only the coefficient vectors α and β. Then:

∆W =
( k∑
i=1

αiAi

)
×
( l∑
j=1

βjBj

)
(2)

In practical terms, to store ∆W for a specific task, we only need to retain the seed (a single scalar)
and the coefficient vectors α and β. Remarkably, this approach allows for a small number of basis
matrices (k + l) to be chosen, irrespective of the rank of the A× B factorization and the shape of
∆W , thereby enhancing the compression ratio to go beyond mn

m+n .

Quantization: We are mainly interested in reducing the storage for a new task, assuming the pre-
trained LLM is already available. Hence, to further reduce the storage, we quantize the α and β
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coefficients to lower precision (e.g., 4 bits) while the random basis and the pre-trained LLM weights
have standard FP16 floating point precision. Note that one can also quantize A and B matrices
in LoRA; however, our method does not force A and B themselves to be of low precision. One
can quantize α and β after the optimization (post-training quantization) or while optimizing them
(quantization-aware training). We expect the latter to perform better. For quantization-aware learning,
we use the method in (Rastegari et al., 2016b; Jacob et al., 2018) where we use the quantized α and β
in the forward pass and update the FP16 versions of α and β in the backward pass. Moreover, we use
the Straight-Through Estimator (STE) trick (Bengio et al., 2013) to estimate the gradient.

A few recent works have shown that it is possible to quantize the weights of LLMs for each task,
which reduces both computation and storage. However, these methods are not suitable for a large
number of tasks since the quantized LLM is still task-specific and large.

Memory Efficiency: Note that depending on the number of basis matrices, the random basis may
be large, requiring a large memory. Interestingly, generating random matrices in the GPU itself is
very fast, so similar to PRANC, at each iteration, we generate chunks of the basis matrices at a time,
multiply them by the corresponding coeficents, and discard them. Generating a basis on the fly at the
inference time can drastically reduce the communication cost between CPU and GPU since α and β
vectors for several tasks can be stored in the GPU memory.

Efficiency of NOLA compared to PRANC: PRANC reshapes the whole model parameters or each
layer of it into a long vector and reparameterizes that by a linear combination of random vectors.
However, as mentioned in (Nooralinejad et al., 2022), this method involves multiplication of the
coefficients with the big random matrix twice at each iteration (once in forward and once in backward
passes), which is very expensive. For instance, the size of the random matrix for ResNet18 with
1000 coefficients will be almost 11M × 1K. NOLA reduces this computation while keeping the
same number of parameters by reshaping the long vector to be a 2D matrix and constraining its
rank. Assuming d2 weights and k random basis, the basis matrix size for PRANC will be kd2 while
NOLA with rank r reduces that to kdr assuming that each component in A×B has k

2 basis matrices
to keep the number of parameters equal to PRANC. Then, the total compute for PRANC will be
kd2 + d2 ≈ kd2 while for NOLA, it will be kdr + 2dr ≈ kdr. Hence, assuming a small rank
r, NOLA can reduce the training time of PRANC by a large factor d

r due to the reduction of the
computation at forward and backward passes.
Structure of the parameters: Note that one can apply NOLA to model architectures other than
transformer by simply reshaping the weight tensor to be a 2D matrix (preferably close to square)
and then compressing it. We do this in our ResNet experiments in the Appendix, where the weight
matrices are 4D tensors of convolutional filters.

3 EXPERIMENTS

Here, we evaluate NOLA in transfer learning tasks in both NLP and vision.

3.1 NOLA ON NATURAL LANGUAGE GENERATION (NLG):

We adapt the parameters of pre-trained GPT-2 to three different NLG datasets by finetuning the
parameters using NOLA. We use GPT-2-Large and GPT-2-Medium in our experiments. We follow
the (Li & Liang, 2021; Hu et al., 2021) for our adaptation setup.

Datasets: We utilize the following datasets for our Natural Language Generation (NLG) task: E2E
NLG Challenge (Novikova et al., 2017) serves as a commonly used benchmark for evaluating NLG
models. It encompasses of 51,200 samples, distributed as follows: 42,200 for training, 4,600 for
validation, and an additional 4,600 for testing. DART (Nan et al., 2020) is yet another significant
dataset employed for evaluating text-to-data generation. This dataset is rich with 82,191 examples
drawn from various domains. WebNLG (Gardent et al., 2017) is a text-to-data dataset, boasting
22,000 examples spanning 14 distinct categories. Notably, the WebNLG test set introduces five new
categories, prompting us to present results across all categories within this dataset. These datasets
collectively provide a comprehensive foundation for our NLG evaluation and experimentation.
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Model & Method # Trainable E2E NLG Challenge
Parameters BLEU NIST MET ROUGE-L CIDEr

GPT-2 M (FT) 354.920M 68.2 8.62 46.2 71.0 2.47
GPT-2 M (AdapterL) 0.370M 66.3 8.41 45.0 69.8 2.40
GPT-2 M (AdapterL) 11.090M 68.9 8.71 46.1 71.3 2.47
GPT-2 M (AdapterH) 11.090M 67.3 8.50 46.0 70.7 2.44
GPT-2 M (FTTop2) 25.190M 68.1 8.59 46.0 70.8 2.41
GPT-2 M (PreLayer) 0.350M 69.7 8.81 46.1 71.4 2.49
GPT-2 M (LoRA r=4) 0.350M 70.4 8.85 46.8 71.8 2.53
GPT-2 M (LoRA r=1) 0.098M 68.72 8.72 45.6 70.52 2.43
GPT-2 M (NOLA QV) 0.096M 70.03 8.82 46.74 71.64 2.51
GPT-2 M (NOLA MLP) 0.096M 70.20 8.79 46.72 71.83 2.51
GPT-2 M (NOLA QV) 0.048M 70.09 8.82 46.44 71.36 2.52
GPT-2 M (NOLA MLP) 0.048M 69.42 8.71 46.51 71.51 2.47

GPT-2 L (FT) 774.030M 68.5 8.78 46.0 69.9 2.45
GPT-2 L (AdapterL) 0.880M 69.1 8.68 46.3 71.4 2.49
GPT-2 L (AdapterL) 23.000M 68.9 8.70 46.1 71.3 2.45
GPT-2 L (PreLayer) 0.770M 70.3 8.85 46.2 71.7 2.47
GPT-2 L (LoRA r=4) 0.770M 70.4 8.89 46.8 72.0 2.47
GPT-2 L (LoRA r=1) 0.184M 69.89 8.81 46.70 71.64 2.53
GPT-2 L (NOLA QV) 0.144M 70.46 8.85 46.77 71.68 2.54
GPT-2 L (NOLA MLP) 0.144M 70.12 8.80 46.48 71.24 2.52
GPT-2 L (NOLA QV) 0.072M 69.76 8.80 46.44 71.34 2.51
GPT-2 L (NOLA MLP) 0.072M 69.39 8.71 46.63 71.49 2.48
GPT-2 L (NOLA QV) 0.036M 70.12 8.80 46.67 71.65 2.53
GPT-2 L (NOLA MLP) 0.036M 69.99 8.81 46.44 71.49 2.53

Table 1: E2E NLG Challenge: We compare NOLA to LoRA with two different architectures: GPT-2
medium (M) and large (L). AdapterL and AdapterH are two Adapter baselines reported in (Hu et al.,
2021). To reduce number of parameters in LoRA, we use lower rank (LoRA r=1). We don’t see drop
in performance by reducing number of trainable parameters to 1

20 of LoRA with rank 4 in GPT-L.
Note that in LoRA, one cannot reduce the number of parameters below rank one.

LoRA: In our experiments, we apply LoRA on both query and value projection layer in each attention
block. Since number of parameters is tied to the rank, we adjust the rank to reduce number of
parameters. We compare to LoRA with both rank four and rank one.

Other Baselines: Moreover, we compared NOLA to a few other baselines, including finetuning
all parameters, Adapters (Houlsby et al., 2019; Lin et al., 2020b; Pfeiffer et al., 2021; Rücklé et al.,
2020), and Prefix-layer tuning (PreLayer) (Li & Liang, 2021).

NOLA: We evaluate NOLA with two different variations: 1. Adapting MLP layers. 2. Adapting
query and value projection layers. Note that, unlike LoRA, we can use any number of parameters
while applying NOLA to any weight structure since the number of parameters is not tied to the shape
of the weight tensor. We allocate an equal number of parameters to A and B in each NOLA layer
(i.e., k = l). Using k = l = 1000 results in 0.096M parameters in GPT-M and 0.144M parameters
in GPT-L. Also, we use half (l = k = 500) and quarter (l = k = 250) number of parameters per
layer to get smaller checkpoints.

Results: We compare to LoRA and other baselines in Table 1 and Table 6 in the Appendix. NOLA is
on par or better compared to other methods with the same number of parameters. In the E2E task,
NOLA with 0.036M parameters archives a BLEU score of 70.12, which is 20 times more compact
compared to LoRA with rank 4 that has 0.77M parameters and archives a BLEU score of 70.4. This
NOLA model uses a rank of 8, which does not affect the number of parameters and increases the run
time slightly (negligible compared to that of the actual LLM model).

Implementation Details: We trained our models using a single NVIDIA RTX 6000 Ada Generation
GPU. For all hyperparameters except learning rate, we use the same values as LoRA for training and
evaluation of GPT-2. We train our models for 5 epochs with a learning rate of 0.1 and no weight
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Model & Method Random Basis Training Training Time # Trainable E2E NLG Challenge
Memory (ms/batch) Parameters BLEU NIST MET ROUGE-L CIDEr

GPT-2 L (LoRA r=1) - 33.35GB 776 184K 69.89 8.81 46.70 71.64 2.53
GPT-2 L (NOLA QV) Non-shared 33.37GB 834 144K 70.46 8.85 46.77 71.68 2.54
GPT-2 L (NOLA QV) Shared 33.40GB 779 144K 70.32 8.85 46.74 71.71 2.54

Table 2: Training time and memory: We compare the training memory and running time of NOLA
to LoRA. Since generating a random basis on each layer has a small overhead, we can share the basis
across layers to save time. This version of NOLA has a similar runtime to LoRA and on-par accuracy
to NOLA with a non-shared basis.

Model & Method # Trainable rank E2E NLG Challenge
Parameters BLEU NIST MET ROUGE-L CIDEr

GPT-2 M (NOLA QV)

96K 8 70.03 8.82 46.74 71.64 2.51
96K 4 69.69 8.76 46.56 71.44 2.51
96K 2 70.47 8.86 46.71 71.79 2.53
96K 1 69.09 8.78 45.87 70.15 2.45

GPT-2 L (NOLA QV)

144K 8 70.46 8.85 46.77 71.68 2.54
144K 4 70.25 8.85 46.84 71.81 2.54
144K 2 69.69 8.78 46.55 71.25 2.51
144K 1 69.71 8.82 46.47 70.96 2.51

Table 3: Effect of rank in NOLA: We vary the rank from 1 to 8. Note that we can use the same
number of parameters in all ranks since the number of parameters is not tied to the rank in NOLA.

decay. We use a batch size of 8. We use a rank of 8 for NOLA in our experiments. Like LoRA, we
scale A×B with c

r , where c is a hyperparameter and r is the rank. We use the default value of c = 1.

Training Time and Memory of NOLA: Similar to LoRA, in the inference time, we can calculate
A×B offline and merge it with W . Therefore, NOLA does not have any overhead compared to the
original model. In training time, NOLA has a small overhead due to the multiplication of coefficients
to basis weights. We measure the running time and memory footprint of NOLA during training and
compare it to LoRA in Table 2. Since generating a random basis for each layer adds a small overhead,
we can share the random basis across all layers and generate and store them only once to improve the
running time. We measure time and memory with a batch size of 8. NOLA, with a unique random
basis for each layer, is slightly slower than LoRA. However, NOLA with a shared random basis has
on-par accuracy with the unique random basis and has a similar running time to LoRA.

Ablation Study on the rank of NOLA: Since the number of parameters is decoupled from the rank
of the matrix, we can solely evaluate the effect of rank without changing the number of parameters.
We report the effect of rank in Table 3. We vary the rank from 1 to 8 and use c = 1.0 for ranks 4 and
8, and c = 0.5 for lower ranks. As also noted by Hu et al. (2021), understanding the effect of rank
needs more rigorous study as future work.

3.2 NOLA WITH QUANTIZED PARAMETERS:

We evaluate the performance of NOLA with quantized α and β parameters on the E2E dataset in
Table 4 in two different setups. First, we do Post Training Quantization (PTQ). We simply quantize
the value of parameters to q bits after the training. We observe no significant drop in both LoRA and
NOLA in 4 bits PTQ experiments. Second, we evaluate models with Quantization Aware Training
(QAT). We train models while we simulate quantization on the forward pass and update the FP16
parameters. We use rank 4 for NOLA. In QAT with 3 bits, NOLA has a slight drop of 0.3 points,
while LoRA has a drop of 2.8 points in the BLEU metric. Note that although α and β are quantized
in NOLA, A and B can be floating points since the bases are kept as floating point.

3.3 NOLA ON VISION TRANSFORMERS

We perform experiments on the image classification task on multiple datasets. The backbone network
is pre-trained using supervised / self-supervised approaches on the ImageNet classification task and
is finetuned on the target dataset.
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Model & Method # Quantization E2E NLG Challenge
Bits BLEU NIST MET ROUGE-L CIDEr

Post Training Quantization

GPT-2 L (LoRA r=1)

16-bit 69.89 8.81 46.70 71.64 2.53
8-bit 69.91 8.81 46.69 71.75 2.53
4-bit 69.63 8.75 46.32 71.24 2.48
3-bit 62.01 8.02 42.01 67.23 2.07

GPT-2 L (NOLA QV)

16-bit 70.46 8.85 46.77 71.68 2.54
8-bit 70.43 8.84 46.78 71.72 2.54
4-bit 70.29 8.82 46.74 71.82 2.52
3-bit 65.14 8.58 44.38 67.56 2.23

Quantization Aware Training

GPT-2 L (LoRA r=1) 3-bit 67.08 8.86 44.67 68.76 2.36
2-bit 56.13 4.70 35.38 63.68 1.40

GPT-2 L (NOLA QV) 3-bit 70.14 8.82 46.58 71.61 2.53
2-bit 68.69 8.72 46.06 70.61 2.48

Table 4: Quantization: Post-training quantization of parameters does not degrade the performance
up to the 4 bit quantization. In quantization-aware training, NOLA is more robust to quantization
compared to LoRA.

Implementation details: We experiment with ViT-B and ViT-L architectures with supervised and self-
supervised (MAE) initialization. All pre-trained networks are obtained from Timm library (Whitman).
All approaches are trained for 50 epochs, and the top-1 accuracy at the final epoch is reported. We use
a batch-size of 64 and tune the initial learning rate for each dataset and architecture for all approaches.
Since our focus is on finetuning on small datasets, we use 5 and 10 labeled examples per class for
finetuning. Since there is a high variance in performance due to the small training sets, we sample
four different sets of samples per k-shot and three different initializations per sampled dataset. We
report the mean accuracy and standard deviation across all runs. All approaches are trained with
cross-entropy loss. Additional details are in the appendix.

Datasets: ImageNet-21k and ImageNet-1k are used to pretrain the backbone models. We use
CIFAR10 (Krizhevsky et al., 2014), CIFAR100 (Krizhevsky et al., 2009), CUB-200-2011 (Welinder
et al., 2010) and Caltech-101 (Fei-Fei et al., 2004) datasets for finetuning.

Baselines: We compare NOLA with three baseline approaches: Linear, Full-FT (full fine-tuning)
and LoRA (Hu et al., 2021). In Linear, only the final classifier head is optimized, while in Full-FT,
the entire backbone network is optimized. No additional parameters are used during finetuning for
both these approaches. LoRA employs an additional low-rank decomposition of weight matrices for
finetuning. We use LoRA with rank (r) set to 1 and 4 in our experiments. We empirically choose the
best rank when only one of them is reported. We primarily apply NOLA on the MLP layers and use
rank of 4 for ViT-B and 1 for ViT-L. We report the number of trainable parameters for each approach
excluding the classifier head parameter count which is common to all approaches.

Results: Results on finetuning on image classification tasks are presented in Table 5. When using
a similar number of training parameters, NOLA outperforms LoRA in most of the settings across
architectures and datasets. It also achieves comparable performance to LoRA with just half or
one-third of the training parameters of LoRA. This is consistent with our observations on the NLG
tasks. The difference between the two methods is particularly noticeable when the number of training
examples is small - either in 5 shot setup or when the number of classes is small, as in CIFAR-10.
Both LoRA and NOLA consistently and significantly outperform Linear and Full-FT approaches.
NOLA can easily be employed in MLP layers since the number of training parameters is decoupled
from the weight matrix dimensions. A similar application of LoRA would require 8× more training
parameters due to the large hidden layer dimensionality of the MLP module. We empirically observe
that NOLA-MLP slightly outperforms NOLA on attention block (ref. table 9 in appendix).

3.4 A TOY EXPERIMENT:

We believe NOLA is a better reparametrization than PRANC and can achieve local minimums that
PRANC cannot achieve. To show this empirically, we perform a very simple experiment where we
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Table 5: Results on vision tasks. We finetune ImageNet pre-trained ViT models on multiple small
datasets with 5 and 10 training samples. The mean accuracy and standard deviation across 12 runs
are reported. The number of train parameters for Linear classifier depends on the number of classes
in the dataset. Like NLG, NOLA outperforms LoRA with comparable parameters across datasets and
architectures, particularly in the low training data regime. The performance of NOLA with half or
one-third of the training parameters is comparable to that of LoRA. Note that LoRA cannot reduce its
training parameters when its rank is one.

Base # Train CIFAR-10 CIFAR-100 CUB-200-2011 Caltech-101
Model Params 5 10 5 10 5 10 5 10

ViT-B

Linear 80.8 (1.1) 85.1 (1.0) 58.9 (0.9) 64.5 (0.7) 72.7 (0.4) 79.2 (0.2) 85.8 (0.8) 88.5 (0.4)
Full-FT 5.3M 73.9 (6.5) 87.6 (2.7) 61.4 (2.4) 78.2 (1.1) 59.7 (1.9) 76.6 (0.2) 87.9 (0.8) 91.1 (0.5)

LoRA (r=4) 141K 87.3 (2.3) 93.1 (0.5) 76.3 (0.5) 81.6 (0.9) 75.7 (0.5) 82.4 (0.3) 88.4 (1.1) 90.8 (0.5)
NOLA-MLP 47K 87.9 (1.3) 92.2 (0.5) 75.1 (0.6) 81.3 (0.8) 75.5 (0.6) 81.7 (0.4) 88.0 (1.2) 90.6 (0.5)

ViT-B-MAE

Linear 27.4 (1.9) 34.5 (1.4) 15.7 (0.7) 22.2 (0.2) 12.7 (0.3) 18.4 (0.3) 66.9 (1.1) 76.9 (0.6)
Full-FT 5.3M 41.1 (4.4) 58.4 (3.6) 19.7 (4.8) 24.2 (11.1) 23.0 (3.8) 51.9 (2.8) 76.4 (2.3) 86.5 (0.5)

LoRA (r=4) 141K 54.7 (1.6) 70.1 (2.2) 39.3 (3.1) 52.4 (1.3) 35.7 (1.5) 54.0 (0.6) 82.4 (0.6) 87.7 (0.5)
NOLA-MLP 47K 55.1 (2.6) 72.1 (2.7) 42.1 (1.4) 53.5 (1.0) 35.8 (1.5) 53.9 (0.6) 88.0 (1.2) 90.6 (0.5)

ViT-L

Linear 84.1 (1.8) 88.4 (1.1) 63.7 (1.3) 70.6 (0.9) 73.7 (0.6) 79.2 (0.3) 87.6 (0.9) 89.9 (0.4)
Full-FT 289M 77.2 (2.7) 90.2 (2.8) 74.0 (2.3) 86.2 (0.6) 73.3 (0.9) 83.9 (0.2) 88.7 (1.0) 91.3 (0.7)

LoRA (r=4) 375K 86.5 (2.0) 93.8 (1.0) 82.9 (0.9) 87.6 (0.6) 81.2 (0.4) 85.3 (0.3) 89.3 (0.7) 91.3 (0.3)
LoRA (r=1) 94K 86.3 (1.3) 92.8 (0.8) 82.2 (0.8) 85.6 (0.9) 80.6 (0.3) 85.2 (0.3) 89.9 (1.0) 91.6 (0.4)
NOLA-MLP 94K 89.0 (3.6) 96.0 (0.5) 83.6 (0.9) 87.8 (0.6) 80.8 (0.6) 85.2 (0.2) 90.0 (0.7) 91.7 (0.3)
NOLA-MLP 47K 83.9 (1.8) 93.0 (1.7) 81.2 (1.0) 87.1 (0.6) 80.7 (0.5) 85.0 (0.3) 89.8 (0.8) 91.5 (0.4)

ViT-L-MAE

Linear 40.2 (2.3) 49.2 (2.6) 22.6 (0.9) 31.3 (0.5) 15.2 (0.3) 21.9 (0.4) 75.2 (0.5) 83.2 (0.6)
Full-FT 289M 60.6 (4.5) 68.3 (4.0) 37.9 (11.1) 52.0 (16.1) 42.2 (2.3) 67.1 (1.1) 87.2 (0.8) 90.8 (0.7)

LoRA (r=4) 375K 63.5 (3.0) 82.4 (2.3) 50.2 (6.8) 62.6 (5.2) 35.2 (2.9) 60.8 (1.2) 87.0 (0.9) 90.7 (0.4)
LoRA (r=1) 94K 67.7 (3.8) 83.8 (1.2) 50.4 (1.0) 62.5 (0.6) 32.9 (1.8) 56.6 (1.7) 87.0 (0.6) 90.8 (0.4)
NOLA-MLP 94K 70.6 (3.8) 86.0 (1.4) 51.7 (1.1) 63.8 (0.8) 36.9 (5.6) 61.6 (1.0) 87.4 (0.4) 90.9 (0.5)
NOLA-MLP 47K 69.6 (3.8) 84.8 (1.1) 49.9 (0.8) 62.8 (0.7) 36.1 (0.8) 58.8 (1.2) 87.1 (0.6) 90.9 (0.4)

apply a 2-layer MLP for the MNIST classification task. Since we want to measure which method is
better at reaching the local minimums and not necessarily the generalization, we evaluate the models
by the training loss. Also, we intentionally use a large number of neurons in the hidden layer to
over-parameterize and increase the number of local minimums.

We use a linear layer from 784 features to 256 with bias followed by ReLU and a linear layer from
256 to 10 classes. We use all 60K samples for training to report the training loss. For both PRANC
and NOLA, we use 32 parameters for each layer. Other hyperparameters are same for both: 200
epochs, 512 batch size with lr = 0.05. We use rank r = 4 for NOLA. PRANC has a final training
loss of 0.87, while NOLA achieves a training loss of 0.71. This simple experiment empirically
supports that NOLA has better representation power. Additionally, PRANC training finishes in 1152
seconds while NOLA finishes in 579 seconds. We will leave the theoretical study of this comparison
for future work. Moreover, this experiment empirically shows that NOLA is a generic method, and
its success is not dependent on the architecture of transformers or attention modules. Moreover, we
show results of training CNNs from scratch on image classification tasks in Sec A of Appendix.

3.5 MEASURING THE RANK OF POSSIBLE SOLUTIONS IN NOLA VS PRANC:
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Figure 2: Comparing the rank of samples in the solution
subspace for PRANC and NOLA, given the same number of
parameters, k. “Percentage Coverage” is the subspace rank
divided by the max possible rank (d2), so 1 denotes full rank.

Choosing k basis vectors in PRANC
will result in all possible learned ma-
trices living in a k dimensional sub-
space. However, since NOLA with
the same number of total parameters
uses A×B factorization, the possible
solutions can live in a higher dimen-
sional subspace. We do a simple ex-
periment by sampling several random
coefficient vectors, reconstructing the
∆W matrix, reshaping it to be a long
(d2)-dimensional vector, and measuring the rank of the samples to see how much of the whole space
is covered by the samples. As expected, NOLA can cover the whole space using a small number of
parameters compared to PRANC. The results are shown in Figure 2 for a simple experiment with
varying the d× d size of the weight matrix and the total number of parameters.
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4 RELATED WORKS

Vision and Language Transformer Models: Transformer networks, introduced by (Vaswani et al.,
2017), emerged as a sequence-to-sequence model in Natural Language Processing (NLP). Their
success soon extended to the computer vision community, with subsequent works (Dosovitskiy et al.,
2021; Touvron et al., 2021) introducing the Vision Transformer (ViT) network as a strong alternative
to the Convolutional Neural Network (CNN) backbones. Transformers accept a sequence of tokens
as input. These tokens can be, for instance, word embeddings in language or image patches in vision.
BERT (Devlin et al., 2019) and GPT-2 (Radford et al., 2018) in NLP, and MAE (He et al., 2021) and
DINO (Caron et al., 2021) in computer vision train transformer networks via self-supervision on
large amounts of unlabeled data. These studies demonstrate that large transformer networks when
trained on massive corpora, generalize well to downstream tasks even when finetuning on very few
task-specific examples. For example, Brown et al. (2020) show that GPT-3 with 175B parameters
is a good few-shot learner. Lastly, the scaling law presented by Kaplan et al. (2020) indicates that
a simultaneous increase in training data and model parameters can lead to significant performance
gains and emergent capabilities previously unavailable to smaller models.

Parameter Efficient Fine-Tuning: Owing to their unprecedented few-shot generalization perfor-
mance, large neural networks, such as foundation models and LLMs have gained immense popularity
in recent years. An increasing number of users are customizing these models to adapt them to
their specific tasks. However, given the colossal size of these models, fine-tuning and storing the
entire set of model parameters (Devlin et al., 2019; Radford et al., 2018) for each task is impractical.
This challenge is exacerbated as the number of tasks increases. In addition to storage concerns,
the overhead involved in loading task-specific models and transferring weights from CPU to GPU
often becomes a computational bottleneck in many applications. Parameter Efficient Fine-Tuning
(PEFT) approaches aim to address these issues by identifying the minimum number of parameters
needed to adapt a large model. Adapters (Houlsby et al., 2019; Rebuffi et al., 2017; Lin et al., 2020b;
Mahabadi et al., 2021) are PEFT approaches that achieve adaptation by adding small modules to the
intermediate layers of the model. A major drawback of Adapters is the extra latency they introduce
in inference. BitFit (Zaken et al., 2021) only adapt bias of the network. Ladder tuning (Sung et al.,
2022a) reduce memory footprint in training by avoiding back-propagation through the main backbone.
IA3 (Liu et al., 2022) trains extra parameters in the attention module. Another widely adopted PEFT
approach is prompt-tuning for LLMs that involves optimizing a new set of input tokens, or prompts,
for each task (Li & Liang, 2021; Lester et al., 2021; Hambardzumyan et al., 2020; Liu et al., 2021).
While reminiscent of prompt engineering, the distinction lies in training a specific set of prompt
tokens in prompt-tuning which might also increase inference latency.

Hu et al. (2021) introduced LoRA, demonstrating that a low-rank modification of the original
weights is sufficient to adapt an LLM to a new task. Unlike adapters and prompt-tuning, these
low-rank modifications can be integrated into the original weights, thus avoiding additional overhead
during inference. However, LoRA has two main limitations: 1) the rank-one decomposition sets a
lower bound on the parameters needed for fine-tuning, and 2) the number of required parameters
is contingent upon the architecture and the rank choice. Our work, termed NOLA, addresses these
challenges by decoupling the trainable parameters from both the rank choice and the network
architecture. Several recent studies have sought to enhance LoRA by quantizing its parameters
(Dettmers et al., 2023; Xu et al., 2023; Kwon et al., 2022; Gong et al., 2023), optimizing the design
choice of LoRA through neural architecture search (Zhang et al., 2022), or dynamically allocating
parameters based on the required rank for each weight matrix (Zhang et al., 2023). Most of these
enhancements are also compatible with our proposed method. In fact, we demonstrate that NOLA
can be quantized to 4-bit without any performance degradation, thereby emphasizing that the concept
of quantization is distinct from and complementary to, NOLA.

Compact Deep Learning Models: A closely related area to PEFT is model compression, a topic
that has consistently garnered interest within the community. Pruning Kim et al. (2020); Lin et al.
(2020a); Siems et al. (2021); Tiwari et al. (2021); Hayou et al. (2020); Wang et al. (2020); Li et al.
(2021) and quantization Rastegari et al. (2016a); Lee et al. (2021) stand as the principal methods
for compressing neural networks. Techniques such as those in Kusupati et al. (2020); Isik et al.
(2022) can achieve a high pruning rate, leading to significant compression. The use of hash functions
to group a network’s parameters and leverage their inherent redundancy is another fundamental
approach in the field, as illustrated by the seminal work of HashedNet (Chen et al., 2015). Moreover,
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implementing intelligent coding techniques, like Huffman coding, atop pruning and quantization, has
been demonstrated to further improve compression (Han et al., 2015). Exploring these methodologies
for storing task-specific large models continues to be an active area of research.
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A APPENDIX

Model & Method # Trainable DART WebNLG
Parameters BLEU↑ MET↑ TER↓ BLEU↑ MET↑ TER↓

GPT-2 M (Fine-Tune) 354.000M 46.2 0.39 0.46 46.5 0.38 0.53
GPT-2 M (AdapterL) 0.370M 42.4 0.36 0.48 50.2 0.38 0.43
GPT-2 M (AdapterL) 11.000M 45.2 0.38 0.46 54.9 0.41 0.39
GPT-2 M (FTTop2) 24.000M 41.0 0.34 0.56 36.0 0.31 0.72
GPT-2 M (PreLayer) 0.350M 46.4 0.38 0.46 55.1 0.41 0.40
GPT-2 M (LoRA r=4) 0.350M 47.1 0.39 0.46 54.91 0.41 0.39
GPT-2 M (LoRA r=1) 0.098M 46.36 0.38 0.48 53.52 0.40 0.40
GPT-2 M (NOLA QV) 0.096M 47.03 0.38 0.48 53.90 0.40 0.40
GPT-2 M (NOLA MLP) 0.096M 47.06 0.38 0.47 54.67 0.41 0.40
GPT-2 M (NOLA QV) 0.048M 45.66 0.38 0.49 53.82 0.40 0.40
GPT-2 M (NOLA MLP) 0.048M 45.46 0.38 0.49 52.98 0.4 0.4

GPT-2 L (Fine-Tune) 774.000M 47.0 0.39 0.46 55.5 0.42 0.42
GPT-2 L (AdapterL) 0.880M 45.7 0.38 0.46 56.0 0.41 0.39
GPT-2 L (AdapterL) 230.000M 47.1 0.39 0.45 57.7 0.43 0.39
GPT-2 L (PreLayer) 0.770M 46.7 0.38 0.45 56.3 0.42 0.40
GPT-2 L (LoRA r=4) 0.770M 47.5 0.39 0.45 57.06 0.43 0.38
GPT-2 L (LoRA r=1) 0.184M 47.72 0.39 0.47 55.92 0.42 0.39
GPT-2 L (NOLA QV) 0.144M 47.83 0.39 0.47 55.83 0.41 0.39
GPT-2 L (NOLA MLP) 0.144M 47.77 0.39 0.47 56.00 0.42 0.39
GPT-2 L (NOLA QV) 0.072M 46.41 0.38 0.48 55.47 0.41 0.38
GPT-2 L (NOLA MLP) 0.072M 46.74 0.38 0.48 55.77 0.41 0.39

Table 6: DART and WebNLG Dataset: Similar to Table 1 we compare NOLA to other methods.
NOLA is on par or better with other methods with the same number of parameters.

To compare the representation power of NOLA and PRANC, we train NOLA from scratch on an
image classification task using a CNN architecture. For each convolution layer, we reshape all
parameters of a layer into a matrix (close to square shape) and apply NOLA to the matrix. Then,
we reshape it to the original shape of the convolution. Additionally, we train LoRA using a similar
approach as NOLA. We follow a similar setup as (Nooralinejad et al., 2022) for our experiments on
image classification.

Datasets and Architectures: We consider two architectures in our experiments: ResNet20 with
270K parameters, and ResNet18 (He et al., 2016) with 11M parameters. We train ResNet20 on
CIFAR10 (Krizhevsky et al., 2014), and ResNet18 on ImageNet100 (Deng et al., 2009).

Results: We report result of ImageNet100 in Table 8, and CIFAR10 in Table 7. NOLA outperforms
both PRANC and LoRA with a similar number of parameters.

Implementation Details: For ImageNet100 and ResNet18, we use k = l = 2, 000 basis for each of
20 modules, and for the classifier (last linear layer), we used k = l = 10, 000, resulting in a total of
100, 000 trainable parameters excluding 9, 600 batchnorm parameters. We use rank 64 for all layers.
We train all models using Adam optimizer with a learning rate of 0.001 and batch size of 256 for 200
epochs. For CIFAR-10 and ResNet20, we use k = l = 250 basis for each convolutional module, and
for the linear layer, we use k = l = 1000 parameters. We use batch size 256, Adam optimizer, and a
learning rate of 0.001. We use a single NVIDIA-GeForce RTX 3090 for all experiments.

Training Time Comparison: We measure the training time of NOLA and PRANC on a single
NVIDIA-GeForce RTX 3090 GPU and batch size of 256. Note that training time includes both
forward and backward passes for each batch. On average, NOLA processes a batch in 228ms while
PRANC does the same in 1070ms, so NOLA is 4.6 times faster than PRANC.

NOLA on Vision Transformers:

Implementation detail: We consider learning rates of 5e− 3, 1e− 3 and 5e− 4 for LoRA, NOLA
and Linear methods and 8e−5, 5e−5, 3e−5 and 1e−5 for Full-FT. The best settings is chosen based
on the performance on validation set. For creation of k-shot dataset, we randomly sample without
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Table 7: Training On CIFAR10: Result
of our method on CIFAR10 dataset and
ResNet20.

Method # Params Acc.
trained model 269,722 88.92%

PRANC 12,752 81.5%
LoRA 13,295 81.5%
NOLA 12,876 82.4%

Table 8: Training On ImageNet100: Result of our
method on ImageNet-100 dataset and ResNet18

Method # Params Acc.
trained model 11,227,812 82.1%

HashedNet Chen et al. (2015) 129,200 52.96%
PRANC 119,200 61.08%
LoRA 150,000 63.50%
NOLA 109,600 64.66%

Table 9: Comparison between NOLA in MLP and attention blocks: We observe that NOLA on
MLP block is more effective. We choose this as our default setting.

Base # Train CIFAR-10 CIFAR-100 CUB-200-2011 Caltech-101
Model Params 5 10 5 10 5 10 5 10

ViT-L NOLA-QV 47K 87.0 (0.9) 91.6 (0.7) 74.8 (0.6) 80.4 (0.9) 75.3 (0.4) 81.7 (0.3) 87.9 (1.1) 90.6 (0.5)
NOLA-MLP 47K 87.9 (1.3) 92.2 (0.5) 75.1 (0.6) 81.3 (0.8) 75.5 (0.6) 81.7 (0.4) 88.0 (1.2) 90.6 (0.5)

replacement from the train set. For each of these sets, we run with three different initializations of the
networks. This process is repeated four times and the averaged values are reported.

Comparison between NOLA-QV and NOLA-MLP: We experiment with NOLA layer in both the
attention and MLP modules of the vision transformer. We observe that applying NOLA on MLP
performs better than that on attention block (table 9). Thus, we use NOLA-MLP as our default
setting. Note that the number of trainable parameters remains the same in both versions. Unlike this,
applying LoRA on MLP block would require significantly higher number of trainable parameters due
to the increased dimensions of the weight matrices in MLP compared to those in attention block.
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