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Abstract

Data augmentation is crucial in training deep models,
preventing them from overfitting to limited data. Common
data augmentation methods are effective, but recent ad-
vancements in generative AI, such as diffusion models for
image generation, enable more sophisticated augmentation
techniques that produce data resembling natural images.
We recognize that augmented samples closer to the ideal
decision boundary of a classifier are particularly effective
and efficient in guiding the learning process. We introduce
GeNIe which leverages a diffusion model conditioned on
a text prompt to merge contrasting data points (an image
from the source category and a text prompt from the tar-
get category) to generate challenging samples for the tar-
get category. Inspired by recent image editing methods, we
limit the number of diffusion iterations and the amount of
noise. This ensures that the generated image retains low-
level and contextual features from the source image, po-
tentially conflicting with the target category. Our exten-
sive experiments, in few-shot and also long-tail distribution
settings, demonstrate the effectiveness of our novel aug-
mentation method, especially benefiting categories with a
limited number of examples. Our code is available here:
https://github.com/UCDvision/GeNIe

1. Introduction

Augmentation has become an integral part of training deep
learning models, particularly when faced with limited train-
ing data. For instance, when it comes to image classification
with limited number of samples per class, model generaliza-
tion ability can be significantly hindered. Simple transfor-
mations like rotation, cropping, and adjustments in bright-
ness and contrast artificially diversify the training set, of-
fering the model a more comprehensive grasp of potential
data variations. Exposure to a broader range of augmented

samples enhances model robustness, adaptability, and ac-
curacy in predicting novel instances. Hence, augmentation
can serve as a practical strategy to boost the model’s learn-
ing capacity, minimizing the risk of overfitting and facilitat-
ing effective knowledge transfer from limited labeled data
to real-world scenarios.

Various image augmentation methods, encompassing
standard transformations and learning-based approaches,
have been proposed. Some augmentation approaches com-
bine two images possibly from two different categories to
generate a new sample image. The simplest ones in this cat-
egory are MixUp [96] and CutMix [95] where two images
are combined in the pixel space. However, the resulting im-
age is usually not in the manifold of natural images, so the
model will never see such images at test time.

Recently, generative models have excelled in generat-
ing natural images, prompting recent studies to leverage
them for data augmentation. Inspired by diffusion-based
image editing methods, we are interested in employing text-
prompted latent diffusion models [67] to generate hard neg-
ative images that may lead to improved model training. Our
core idea is to sample source images from different cate-
gories and prompt the latent diffusion model with text cor-
responding to a different target category. By controlling the
amount of noise at the latent space and the number of dif-
fusion iterations correspondingly, we can generate images
that are from the target category while they resemble the
source image in terms of the low-level features. This flex-
ibility allows us to generate challenging examples (“hard
negatives”) for the classifier, contributing to enhanced train-
ing performance. Such hard negatives can improve model
performance in handling long-tail distribution of data, as
well as avoiding reasoning based on spurious correlations.

Long-tail distribution: In real-world applications, we
often find that data follows a long-tail distribution. For ex-
ample, when collecting data for driving scenarios, most of
it will be from regular highway circumstances; situations
like jaywalking might not be well-represented. Therefore,
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Figure 1. Generative Hard Negative Images as Data Augmentation (GeNIe): We generate hard negative images that belong to the
target category but are similar to the source image in the low level features. We do this by adding noise to a source image and using a
diffusion model to remove the noise conditioned on a text prompt that suggests this image is from the target category. By controlling the
amount of noise, the diffusion model generates images that are hard negatives for the source category. We expect the generated images to
lie close to the boundary between source and target categories (see Fig. 4), making them effective augmentations for training a classifier.
To further enhance this process, one can sample the source and target categories using the classifier’s confusion matrix.

even though samples of jaywalking are crucial for training
self-driving or surveillance models to operate robustly (for
instance, to ensure the car brake on time), we might not have
enough data for it. This is where data augmentation using
generative models can step in to help create more meaning-
ful data for these less common scenarios.

Spurious correlations. Studies show that accidental ap-
pearance of certain visual features on images belonging to
some categories can drastically impact the final decision of
a classifier to be biased to co-occurrence of those spurious
features [25]. For example, it is rare to see a giraffe in the
middle of a highway. So, the model would pick up on this
contextual bias and fail to recognize a giraffe in this un-
common circumstances. To address this, it is crucial to bat-
tle against this bias when training the model. One solution
is to generate harder examples that violate such biases. In
this case, our approach takes a noisy image of a street, and
prompts the diffusion model with “A photo of a giraffe”, re-
sulting in generating out of distribution hard negatives for
the street category. This in turn helps the model improve at
recognizing giraffes in unconventional situations.

Our extensive experiments, in few-shot and also long-
tail distribution settings, demonstrate the effectiveness of
the proposed novel augmentation method (GeNIe), espe-
cially benefiting categories with a limited number of exam-
ples. For instance, as shown in Figure 1, GeNIe can take a
source image of a bunny and generate images augmenting 9
different target categories in which the low-level features or
background is similar to the source image.

2. Related Work

Data Augmentations: Data augmentation is a simple, yet
effective way to improve generalization of deep learning
models. Recent contrastive self-supervised learning meth-
ods also heavily depend on data augmentation. Simple flip-
ping, cropping, color jittering, and blurring are some forms
of weak and strong augmentations. The strength of aug-
mentation is the extent of image distortion following the
application of each augmentation [75]. However, using data
augmentation is not trivial on some domains (e.g., medical).
For example, using blurring might remove important low
level information from images. More advanced approaches,
such as MixUp [96] and CutMix [95], mix images and their
labels accordingly [14, 29, 37, 48], which seem to offer bet-
ter model generalization and robustness as well. However,
the augmented (mixed) images are now not natural anymore
and thus training proceeds on out of distribution images.
Unlike the above methods, we propose to utilize pretrained
latent diffusion models to augment the training data. Note
that generative vision models are indeed trained to generate
natural images; however, the typical challenge here is that
the generated images might not necessarily belong to same
data distribution as the training dataset, which could entail
further finetuning them to the specific domain.

Training Data Augmentation with Generative Mod-
els: Generative models could be used to generate images
within the manifold of natural images. Using synthesized
images from generative models to augment training data
have been studied before in many domains [24, 70], in-
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cluding domain adaptation [32], visual alignment [58], and
mitigation of dataset bias [72]. While previous methods
predominantly relied on GANs [41, 84, 99] as the gen-
erative model, more recent studies promote using diffu-
sion models [68] to augment the data. More specifically,
[4, 28, 50, 73, 83] study the effectiveness of text-to-image
diffusion models in data augmentation by diversification of
each class with synthetic images. [33] uses an SVM in
the latent space of the CLIP model to find spurious cor-
relations and generates challenging examples using a diffu-
sion model. [22] use CLIP model to filter generated images.
Along the same lines, some studies utilize text-based diffu-
sion for image editing [20]. From this angle, Boomerang
[51] and SDEdit [55] are the closest approaches to our
method. They they edit each data samples (source images)
by adding small amount of noise to each image and apply-
ing reverse diffusion to generate an augmented image close
to the source image. Unlike Boomerang, we set the nega-
tives classes as source and employ the generative model to
transform it to have the semantics of the positive class (Tar-
get class) while preserving the visual futures of the nega-
tive samples, which is the key reason why we argue these
newly generated samples are now hard negatives. In a nut-
shell, the aforementioned studies focus on improving diver-
sity of each class with effective prompts and diffusion mod-
els, however, we focus on generating effective hard negative
samples for each class by combining two sources of contra-
dicting information (images from the source category and
text prompt from the target category.)

Language Guided Recognition Models: Language-
vision foundation models have recently received an upsurge
of attention [2, 62–64, 68, 69]. These models use human
language to guide generating images, or extracting features
from images which are aligned with human languages. Due
to alignment with human language, these models can be
used in downstream recognition tasks. For example, CLIP
[62] shows decent zero-shot performance on many down-
stream tasks by matching image to their text descriptions.
Some recent works improve utilization of human language
in the prompt [19, 59], and others use a diffusion model
directly as classifier [39]. Similar to the above, we use a
foundation model (Stable Diffusion 1.5 [68]) to improve the
downstream task. Concretely, we utilize category names
of the downstream tasks to augment their associate training
data with hard negative samples.

Few-Shot Learning: revolves around learning very fast
from only a handful of samples. FSL is typically con-
ducted in two stages: pretraining on an abundance of data
followed by fast adaptation to unseen few-shot episodes.
Each episode consists of a support set allowing the model
to adapt itself quickly to the unseen classes, and a query
set on which the model is evaluated. In supervised FSL
[1, 10, 21, 43, 60, 76, 79, 93, 101], pretraining is done on

a labeled dataset, whereas in unsupervised FSL [3, 31, 34,
36, 49, 54, 61, 74, 87] the pretraining has to be conducted
on an unlabeled dataset posing an extra challenge in the
learning paradigm and neighboring these methods closer to
the realm of self-supervised learning. Even though FSL is
not of primal interest in this work, we assess the impact of
GeNIe on a number of few-shot scenarios and state-of-the-
art baselines by accentuating on its impact on the few-shot
inference stage.

3. Method: GeNIe
Given an image from a source category, we are interested
in generating an image for a target category, while preserv-
ing low-level visual features or background context of the
source image. Assume we have a conditional latent diffu-
sion model that can denoise an input image guided by a
text prompt, during the reverse process. With this in place,
we pass a source image through the encoder and introduce
noise to its latent embedding followed by denoising it while
being conditioned on a text prompt. In such a construct, the
proximity of the final decoded image to the source image or
the text prompt depends on the amount of added noise and
the number of reverse diffusion iterations. Hence, by con-
trolling the amount of noise, we can generate images that
blend characteristics of both the text prompt and the input
image. If we do not provide much of visual details in the
text prompt (e.g., desired background, etc.), we expect the
final image to follow the details of the source image while
reflecting the semantics of the text prompt. This capability
offered by conditional latent diffusion models allows us to
create novel challenging augmentations, and this sits at the
core of the proposed approach.

Our method is shown in Fig. 1. To augment a target cate-
gory, we select an image from the source category and apply
noise equivalent to n diffusion iterations to its latent em-
bedding. Assuming that T is the total number of diffusion
iterations, we simply choose n = ⌊r × T ⌋, where r is the
ratio of the desired amount of noise. The noisy latent em-
bedding of the image, along with a prompt like “A photo
of a <target category>” is then passed through the re-
verse diffusion model followed by the decoder to generate
an image. This denoising process runs for n iterations re-
sulting in an image closer to the manifold of natural images.
We argue that the newly generated image is a hard negative
example for the source category since it shares low-level
features with the source image while it represents the target
category. We can now use this generated sample to augment
the target category when training an image classifier. Note
that this approach to image editing with reduced number of
iterations n < T is inspired by [51, 55]. What differenti-
ates our proposed approach is extending it to generate hard
negatives by combining two contradicting sources of infor-
mation: i.e., source image and the text prompt referring to
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Figure 2. Visualization of Generative Samples: We compare GeNIe with two baselines: Img2ImgL augmentation: both image and
text prompt are from the same category. Adding noise does not change the image much, so they are not hard examples. Txt2Img
augmentation: We simply use the text prompt only to generate an image for the desired category (e.g., using a text2image method). Such
images may be far from the domain of our task since the generation is not informed by any visual data from our task. GeNIe augmentation:
We use target category name in the text prompt only along with the source image. At appropriate amount of noise (equivalent to 80% of
all diffusion iteration), we generate the desired images. Low amount of noise is still far from target category since the source image has to
much of effect compared to the text prompt. Note that we never define low-level features concretely and never evaluate if the augmented
images preserves those features. That is our hypothesis only. We only evaluate if the augmented images help the accuracy.

the target category. Notably, the source category can be ran-
domly sampled or be chosen from the confusion matrix of a
recently trained image classifier based on real training data.
The latter will result in harder negative samples that can
benefit the training the most.

4. Experiments
We evaluate the impact of GeNIe on Few-Shot classifica-
tion in Sec 4.1, Long-Tailed classification in Sec 4.2, and
fine-grained classification in Sec 4.3.

Baselines. We use Stable Diffusion 1.5 [68] as our base
diffusion model. In all settings, we use the same prompt

format to generate images for the target class: i.e., “A
photo of a <target category>”, where we replace the
target category with the target category label. We
generate 512 × 512 images for all methods. For fairness
in comparison, we generate the same number of new im-
ages for each class. We use a single NVIDIA RTX 3090
for image generation. We consider 2 diffusion-based base-
lines and a suite of traditional data augmentation baselines,
as follows.

Img2Img: This baseline follows the data augmentation
strategy based on Stable Diffusion proposed in [51, 55].
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ResNet-18

Method Augmentation Pre-training 1-shot 5-shot

∆-Encoder [71] - sup. 59.9 69.7
SNCA [90] - sup. 57.8±0.8 72.8±0.7
iDeMe-Net [12] - sup. 59.14±0.86 74.63±0.74
Robust + dist [21] - sup. 63.73±0.62 81.19±0.43
AFHN [43] - sup. 62.38±0.72 78.16±0.56
ProtoNet+SSL [78] Weak sup.+ssl - 76.6
Neg-Cosine [46] Weak sup. 62.33±0.82 80.94±0.59
Centroid Align[1] - sup. 59.88±0.67 80.35±0.73
Baseline [10] - sup. 59.55±0.75 77.31±0.59
Baseline++ [10] - sup. 58.95±0.77 76.65±0.61
PSST [13] Weak sup.+ssl 59.52±0.46 77.43±0.46

UMTRA [36] Weak unsup. 43.09±0.35 53.42±0.31
ProtoCLR [54] Weak unsup. 50.90±0.36 71.59±0.29
SimCLR [9] Weak unsup. 62.58±0.37 79.66±0.27
SimSiam [11] Weak unsup. 62.80±0.37 79.85±0.27
UniSiam+dist [49] Weak unsup. 64.10±0.36 82.26±0.25

UniSiam [49] Weak unsup. 63.14±0.77 81.40±0.53
UniSiam [49] Heavy unsup. 62.80±0.77 81.15±0.55
UniSiam [49] CutMix unsup. 62.67±0.79 80.63±0.55
UniSiam [49] MixUp unsup. 62.14±0.78 80.74±0.55
UniSiam [49] Img2ImgL unsup. 63.86±0.77 82.05±0.53
UniSiam [49] Img2ImgH unsup. 69.06±0.73 83.89±0.48
UniSiam [49] Txt2Img unsup. 74.14±0.63 84.62±0.47
UniSiam [49] GeNIe (Ours) unsup. 75.45±0.62 85.38±0.44

ResNet-34

Method Augmentation Pre-training 1-shot 5-shot

MatchingNet [85] - sup. 53.20±0.78 68.32±0.66
ProtoNet [77] - sup. 53.90±0.83 74.65±0.64
MAML [23] - sup. 51.46±0.90 65.90±0.79
RelationNet [79] - sup. 51.74±0.83 69.61±0.67
Baseline [10] - sup. 49.82±0.73 73.45±0.65
Baseline++ [10] - sup. 52.65±0.83 76.16±0.63

SimCLR [9] Weak unsup. 63.98±0.37 79.80±0.28
SimSiam [11] Weak unsup. 63.77±0.38 80.44±0.28
UniSiam+dist [49] Weak unsup. 65.55±0.36 83.40±0.24

UniSiam [49] Weak unsup. 64.26±0.79 82.33±0.53
UniSiam [49] Strong unsup. 64.48±0.81 82.13±0.55
UniSiam [49] CutMix unsup. 63.99±0.80 81.69±0.56
UniSiam [49] MixUp unsup. 63.65±0.78 80.12±0.78
UniSiam [49] Img2ImgL unsup. 65.52±0.79 82.92±0.51
UniSiam [49] Img2ImgH unsup. 70.46±0.75 84.79±0.47
UniSiam [49] Txt2Img unsup. 75.36±0.61 85.45±0.45
UniSiam [49] GeNIe (Ours) unsup. 77.08±0.60 86.28±0.42

ResNet-50

UniSiam [49] Weak unsup. 64.55±0.79 83.39±0.51
UniSiam [49] Strong unsup. 64.76±0.79 83.24±0.51
UniSiam [49] CutMix unsup. 64.25±0.80 83.24±0.45
UniSiam [49] MixUp unsup. 63.75±0.80 84.55±0.51
UniSiam [49] Img2ImgL unsup. 66.00±0.78 84.01±0.49
UniSiam [49] Img2ImgH unsup. 71.14±0.73 85.66±0.46
UniSiam [49] Txt2Img unsup. 76.44±0.61 86.50±0.42
UniSiam [49] GeNIe (Ours) unsup. 77.28±0.60 87.22±0.40

Table 1. mini-ImageNet: We use our augmentations on (5-way, 1-shot) and (5-way, 5-shot) few-shot settings of mini-Imagenet dataset
with 3 different backbones (ResNet-18,34, and 50). We compare with various baselines and show that our augmentations with UniSiam
method outperforms all the baselines including Txt2Img augmentation. The number of generated images per class is 4 for 1-shot and 20
for 5-shot settings. Note that UniSiam has used only weak augmentation, so we add the other methods for fair comparison.

Concretely, we sample an image from a target class, add
noise to its latent representation and then pass it through the
reverse diffusion. Notice that the focus here is on a target
class for which we generate extra positive samples. Adding
large amount of noise (corresponding to large number of
diffusion iterations) leads to generating an image less simi-
lar to the original image. We use two different noise mag-
nitudes for this baseline: r = 0.3 and r = 0.7 and denote
them by Img2ImgL and Img2ImgH , respectively.

Txt2Img: For this baseline, we omit the the forward
diffusion process and only use the reverse process start-
ing from a text prompt to the target classes of interest.
This is similar to the base text-to-image generation strat-
egy adopted in [4, 28, 50, 68, 73, 83]. Note that an extreme
case of adding maximum noise (r = 0.999) in Img2Img
degenerates it to Txt2Img.

Traditional Data Augmentation: We consider both
weak and strong traditional augmentations. More specif-
ically, for weak augmentation we use random resize crop
with scaling ∈ [0.2, 1.0] and horizontal flipping. For strong
augmentation, we consider random color jitter, random
grayscale, and Gaussian blur. For the sake of complete-
ness, we also compare against more recent advanced data
augmentations such as CutMix [95] and MixUp [96].

Fig. 2 and A1 illustrate a set of generated augmentation
examples for Txt2Img, Img2Img, and GeNIe. As can
be seen, GeNIe effectively generates hard negatives for the

source image class by preserving its low-level features and
transforming its main target class according to the prompt.

4.1. Few-shot Classification

We assess the impact of GeNIe compared to other forms
of augmentation in a number of few-shot classification sce-
narios, where the model has to learn only from the samples
contained in the (N -way, K-shot) support set and infer on
the query set. Note that this corresponds to an inference-
only FSL setting where a pretraining stage on an abundant
dataset is discarded. The goal is to assess how well the
model can benefit from the augmented data samples while
keeping the original N ×K samples intact.

Datasets. We conduct our few-shot experiments on two
most commonly adopted few-shot classification datasets:
mini-Imagenet [65] and tiered-Imagenet [66]. mini-
Imagenet is a subset of ImageNet [17] for few-shot clas-
sification. It contains 100 classes with 600 samples each.
We follow the predominantly adopted settings of [10, 65]
where we split the entire dataset into 64 classes for train-
ing, 16 for validation and 20 for testing. tiered-Imagenet
is a larger subset of ImageNet with 608 classes and a total
of 779, 165 images, which are grouped into 34 higher-level
nodes in the ImageNet human-curated hierarchy. This set of
nodes is partitioned into 20, 6, and 8 disjoint sets of training,
validation, and testing nodes, and the corresponding classes
form the respective meta-sets.
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ResNet-18

Method Augmentation Pre-training 1-shot 5-shot

Transd-CNAPS [5] - sup. 65.9 ± 1.0 81.8 ± 0.7
FEAT [94] - sup. 70.80 84.79
SimCLR[9] Weak unsup. 63.38±0.42 79.17±0.34
SimSiam [11] Weak unsup. 64.05±0.40 81.40±0.30
UniSiam + dist [49] Weak unsup. 67.01±0.39 84.47±0.28
UniSiam [49] Weak unsup. 63.08±0.70 81.04±0.51
UniSiam [49] Heavy unsup. 62.84±0.71 80.94±0.51
UniSiam [49] CutMix unsup. 62.11±0.71 78.90±0.55
UniSiam [49] MixUp unsup. 62.10±0.70 78.35±0.55
UniSiam [49] Img2ImgL unsup. 63.89±0.69 81.76±0.49
UniSiam [49] Img2ImgH unsup. 68.68±0.66 83.45±0.46
UniSiam [49] Txt2Img unsup. 72.91±0.61 84.15±0.45
UniSiam [49] GeNIe(Ours) unsup. 73.62±0.62 85.00±0.43

ResNet-34

UniSiam + dist [49] Weak unsup. 68.65±0.39 85.70±0.27
UniSiam [49] Weak unsup. 65.02±0.71 82.51±0.50
UniSiam [49] Heavy unsup. 64.81±0.72 82.42±0.51
UniSiam [49] CutMix unsup. 63.77±0.72 80.34±0.55
UniSiam [49] MixUp unsup. 64.12±0.73 80.03±0.55
UniSiam [49] Img2ImgL unsup. 66.12±0.70 83.11±0.49
UniSiam [49] Img2ImgH unsup. 70.38±0.66 84.74±0.45
UniSiam [49] Txt2Img unsup. 74.99±0.61 85.35±0.44
UniSiam [49] GeNIe (Ours) unsup. 75.74±0.62 86.02±0.43

ResNet-50

UniSiam + dist [49] Weak unsup. 69.60±0.38 86.51±0.26
UniSiam [49] Weak unsup. 66.75±0.70 84.72±0.47
UniSiam [49] Heavy unsup. 66.46±0.71 84.52±0.48
UniSiam [49] CutMix unsup. 65.99±0.71 83.29±0.50
UniSiam [49] MixUp unsup. 66.12±0.45 84.05±0.78
UniSiam [49] Img2ImgL unsup. 67.76±0.69 85.28±0.46
UniSiam [49] Img2ImgH unsup. 72.38±0.65 86.65±0.42
UniSiam [49] Txt2Img unsup. 77.06±0.58 87.25±0.41
UniSiam [49] GeNIe (Ours) unsup. 78.01±0.58 88.00±0.39

Table 2. tiered-ImageNet: Accuracies in (% ± std) for 5-way,
1-shot and 5-way, 5-shot classification settings on the test-set. We
compare against various state-of-the-art supervised and unsuper-
vised few-shot classification baselines as well as other augmenta-
tion methods, with UniSiam [49] pre-trained ResNet-18, 34 and
50 backbones. UniSiam+dist indicates that the backbone was pre-
trained with a ResNet-50 teacher network.

Evaluation. To quantify the impact of different aug-
mentation methods, we evaluate the test-set accuracies of a
state-of-the-art unsupervised few-shot learning method with
GeNIe and compare them against the accuracies obtained
using other augmentation methods. Specifically, we use
UniSiam [49] pre-trained with ResNet-18, ResNet-34 and
ResNet-50 backbones and follow its evaluation strategy of
fine-tuning a logistic regressor to perform (N -way, K-shot)
classification on the test sets of mini- and tiered-Imagenet.
Following [65], an episode consists of a labelled support-
set and an unlabelled query-set. The support-set contains
randomly sampled N classes where each class contains K
samples, whereas the query-set contains Q randomly sam-
pled unlabelled images per class. We conduct our experi-
ments on the two most commonly adopted settings: (5-way,
1-shot) and (5-way, 5-shot) classification settings. Follow-
ing the literature, we sample 16-shots per class for the query

ResNet-50

Method Many Med. Few Overall Acc

CE [16] 64.0 33.8 5.8 41.6
LDAM [8] 60.4 46.9 30.7 49.8
c-RT [35] 61.8 46.2 27.3 49.6
τ -Norm [35] 59.1 46.9 30.7 49.4
Causal [80] 62.7 48.8 31.6 51.8
Logit Adj. [56] 61.1 47.5 27.6 50.1
RIDE(4E)† [89] 68.3 53.5 35.9 56.8
MiSLAS [100] 62.9 50.7 34.3 52.7
DisAlign [97] 61.3 52.2 31.4 52.9
ACE† [7] 71.7 54.6 23.5 56.6
PaCo† [15] 68.0 56.4 37.2 58.2
TADE† [98] 66.5 57.0 43.5 58.8
TSC [45] 63.5 49.7 30.4 52.4
GCL [44] 63.0 52.7 37.1 54.5
TLC [40] 68.9 55.7 40.8 55.1
BCL† [102] 67.6 54.6 36.6 57.2
NCL [42] 67.3 55.4 39.0 57.7
SAFA [30] 63.8 49.9 33.4 53.1
DOC [88] 65.1 52.8 34.2 55.0
DLSA [91] 67.8 54.5 38.8 57.5

ViT-B

LiVT* [92] 76.4 59.7 42.7 63.8

ViT [18] 50.5 23.5 6.9 31.6
MAE [27] 74.7 48.2 19.4 54.5
DeiT [82] 70.4 40.9 12.8 48.4
LiVT [92] 73.6 56.4 41.0 60.9
LiVT + Img2ImgL 74.26 56.37 34.31 60.46
LiVT + Img2ImgH 73.83 56.35 45.32 61.56
LiVT + Txt2Img 74.86 55.59 48.32 62.18
LiVT + GeNIe 74.46 56.71 50.85 62.80

Table 3. Long-Tailed ImageNet-LT: We compare different aug-
mentation methods on ImageNet-LT and report Top-1 accuracy
for “Few”, “Medium”, and “Many” sets. † indicates results with
ResNeXt50. ∗: indicates training with 384 resolution so is not di-
rectly comparable with other methods with 224 resolution. On the
“Few” set and LiVT [92] method, our augmentations improve the
accuracy by 9.8 points compared to traditional data augmentation
and 2.5 points compared to Txt2Img augmentation.

set in both settings. We report the test accuracies along with
the 95% confidence interval over 600 and 1000 episodes for
mini-ImageNet and tiered-ImageNet, respectively.

Implementation Details: GeNIe generates images for
each class by using all images from every other class as
the source image along with their class labels as the corre-
sponding text prompt. Specifically, we generate 4 samples
per class as augmentations in the 5-way, 1-shot setting and
20 samples per class as augmentations in the 5-way, 5-shot
setting. For the sake of a fair comparison, we ensure that the
total number of labelled samples in the support set after aug-
mentation remains the same across all different traditional
and generative augmentation methodologies.

Results: The results on mini-Imagenet and tiered-
Imagenet for both (5-way, 1 and 5-shot) settings are sum-
marized in Table 1 and Table 2, respectively. Regardless of
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Method Birds Cars Foods Aircraft
CUB200 [86] Cars196 [38] Food101 [6] Aircraft [52]

Baseline 90.34 49.77 82.92 29.19
Img2ImgL 90.73 50.38 87.4 30.99
Img2ImgH 91.31 56.39 91.7 34.73
Txt2Img 92.01 81.29 92.95 41.73
GeNIe (r=0.8) 92.49 87.74 93.06 46.49
GeNIe (r=0.7) 92.52 87.92 92.88 47.01

Table 4. Few-shot Learning on Finegrained dataset: We train
SVM classifier on top of DinoV2 ViT-G pretrained backbone and
report Top-1 accuracy on the test set of each dataset. Our baseline
here is the SVM trained with traditional augmentations. GeNIe
outperforms Baseline across all dataset. Compared to data aug-
mentation with Txt2Img only, GeNIe improves accuracy by 6.6
point and 5.2 point in Cars and Aircraft dataset respectively.

the choice of backbone, we observe that GeNIe helps con-
sistently improve UniSiam’s performance and outperform
other supervised and unsupervised few-shot classification
methods as well as other data augmentation techniques on
both datasets, across both (5-way, 1 and 5-shot) settings.

4.2. Long-Tailed Classification

We evaluate our method in Long-Tailed data, where number
of instances per class is not balanced and most categories
have limited samples (tail). Our goal is to mitigate this bias
by augmenting the tail of the distribution with generated
samples. Following LViT [92], first, we train an MAE [26]
on the unbalanced dataset without any augmentation. We
then train the Balanced Fine Tuning stage by incorporating
the augmentation data generated using GeNIe or the other
baselines. We following the proposed settings in [92] for
the Balanced Fine Tuning stage, which includes traditional
augmentation including CutMix, MixUp with a Balanced
Binary Cross-Entropy (Bal-BCE) loss.

Dataset: We perform experiments on ImageNet-LT [47].
It contains 115.8K images from 1, 000 categories. Max-
imum and minimum number of images per class is 1280
and 5 respectively. Imagenet-LT classes can be divided into
3 groups: “Few” with less than 20 images, “Med” with
20− 100 images, and “Many” with more than 100 images.
Imagenet-LT uses the same validation set as ImageNet.

We generate new data for the “Few” categories only. We
limit the number of generated images to 50 samples per
class. For GeNIe, instead of randomly sampling the source
images from other classes, we use confusion matrix on the
training data to find top-4 most confused classes and only
consider those classes for random sampling. The source
category may be from “Many”, “Med”, or “Few sets”.

Implementation Details: We download the pretrained
ViT-B of [92] and finetune it with Bal-BCE loss proposed
therein on the augmented dataset. We use four NVIDIA
RTX 3090 GPUs with the same hyperparameters as dis-
cussed in [92] for finetuning: 100 epochs, lr = 0.008, batch
size of 1024, CutMix and MixUp for the data augmentation.

Figure 3. Effect of noise in GeNIe: We employ GeNIe to gen-
erate augmentations for the target class ”motorcycle.” As shown
in the example above, a lower ratio of noise results in images that
closely resemble the semantics of the source images, presenting
an inconsistency with the intended target label.

Results: The results are summarized in Table 3. Aug-
menting training data with GeNIe improves accuracy
on the “Few” set by 9.8% and 2.5% compared against
LViT and LViT with Txt2Img augmentation, respectively.
Moreover, GeNIe improves the overall accuracy by 1.9%
compared to the baselines with only traditional augmenta-
tion.

4.3. Fine-grained Few-shot Classification

To further investigate the impact of the proposed method,
we compare GeNIe with other text-based data augmen-
tation techniques across four distinct fine-grained datasets
within a 20-way, 1-shot classification setting. We employ
the pretrained DinoV2 ViT-G [57] backbone as a feature
extractor to derive features from training images. Subse-
quently, an SVM classifier is trained on these features, and
we report the Top-1 accuracy of the model on the test set.

Datasets: We assess our method on several datasets:
Food101 [6] with 101 classes of various foods, CUB200
[86] with 200 bird species classes, Cars196 [38] with 196

7



Figure 4. Embedding visualizations of generative augmentations: We show UMAP embedding for 5 classes of mini-Imagenet dataset.
Colors indicate classes and crosses indicate augmentatedn samples. In the first row, we only display augmentations for the green and blue
classes to avoid visual clutter while in the second row, we show augmentations from ours and baseline for all 5 categories. GeNIe-generated
samples occupy the boundaries between classes, displaying increased diversity compared to other augmentation methods. Notably, decreas-
ing the noise level within GeNIe enhances sample diversity, albeit with a trade-off in label consistency, as detailed in Table 5.

Method GeNIe
(r=0.5) (r=0.6) (r=0.7) (r=0.8) (r=0.9)

Oracle Acc 73.43±0.51 85.77±0.43 94.52±0.23 98.21±0.10 99.26±0.06
5-shot Acc 84.66±0.5 85.48±0.4 86.30±0.4 86.28±0.4 86.17±0.4

Table 5. Consistency of the label for generated samples:
We present both Oracle accuracy and ResNet-34 5-shot accuracy
(numbers are copied from Table 1 and Table 6). Notably, reduc-
ing the noise level below 0.7 is associated with a decline in Oracle
accuracy and a subsequent degradation in the performance of the
final few-shot model.

car model classes, and FGVC-Aircraft [52] with 41 aircraft
manufacturer classes. Further details on each dataset can
be found in Appendix B. The reported metric is the average
Top-1 accuracy over 100 episodes. Each episode involves
sampling 20 classes and 1-shot from the training set, with
the final model evaluated on the respective test set.

Implementation Details: We enhance the basic prompt
by incorporating the superclass name for the fine-grained
dataset: “A photo of a <target class>, a type of
<superclass>”. For instance, in the food dataset and the
burger class, our prompt reads: “A photo of a burger, a type
of food.” No additional augmentation is used for generative
methods in this context. We generate 19 samples for both
cases of our method and baseline with weak augmentation.

Results: Table 4 summarizes the results. Here again
GeNIe outperform all other baselines, including Txt2Img
augmentation. Notably, GeNIe exhibits great effectiveness
in more challenging datasets, outperforming the baseline
with traditional augmentation by about 38% for the Cars
dataset and by roughly 17% for the Aircraft dataset.

Noise ResNet-18 ResNet-34 ResNet-50
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

r=0.5 68.47±0.7 83.66±0.5 70.21±0.7 84.66±0.5 70.55±0.7 85.71±0.4
r=0.6 71.59±0.6 84.69±0.5 73.17±0.7 85.48±0.4 73.65±0.7 86.62±0.4
r=0.7 73.96±0.6 85.45±0.4 75.79±0.6 86.30±0.4 76.04±0.6 87.18±0.4
r=0.8 75.45±0.6 85.38±0.4 77.08±0.6 86.28±0.4 77.28±0.6 87.22±0.4
r=0.9 75.96±0.6 85.29±0.4 77.63±0.6 86.17±0.4 78.03±0.6 87.10±0.4

Table 6. Effect of Noise in GeNIe: We use the same setting as
in Table 1 to study the effect of the amount of noise. As expected,
small noise results in worse accuracy since some generated images
may be from the source category rather than the target one. As
shown in Table 5, for r = 0.5 only 73% of the generated data is
from the target category. This behavior is also shown in Figure 3.

4.4. Ablation and Analysis

Label consistency of the generated samples. Remember
that a very high noise level (r = 0.99) practically dimin-
ishes the impact of the source image, degenerating the the
process into text-to-image generation. Thus, to be able to
preserve the contextual low-level properties of the source
image, we need to start the reverse process from a lower
noise level. On the flip side, we observe in Fig. 3 that a
moderately low noise level also does not seem to allow
the model to appropriately incorporate the prompt in the
reverse process, practically leading to a generated images
that might not manifest the semantics of the target category.
We refer to this matching between the prompt label and the
semantics of the generated samples as label consistency.
To quantify label consistency, we utilize an ImageNet-
pretrained DeiT-Base [81] backbone as an Oracle model
to infer the actual label of the generated image as opposed
to the text prompt generating it - assuming that the Oracle

8



model provides accurate labels. In Table 5, we present
the 5-shot accuracy of the few-shot model (ResNet-34,
presented earlier in Table 1) alongside the Oracle Accuracy.
We observe a decline in the label consistency of generated
data (quantified by the performance of the Oracle model)
when decreasing the noise level. As can be seen, this also
results in a degradation in the performance of the final
few-shot model (86.28% → 84.66%) corroborating that an
appropriate choice of r plays a crucial role in our design
strategy. We investigate this further in the following.

Effect of Noise in GeNIe. To investigate the existence of
a sweet-spot in the amount of noise (r), we examine the
impact of noise on the performance of the few-shot model,
summarizing the findings in Table 6. Our observations
indicate that noise levels r ∈ [0.7, 0.8] yield the best
performance. Conversely, utilizing noise levels below
0.7 diminishes performance due label inconsistency, as is
demonstrated in Table 5 and Fig 3. As such, determining
the appropriate noise level is pivotal for the performance of
GeNIe to be able to generate challenging hard negatives
while maintaining label consistency. To address this,
one possible approach could be to leverage additional
information from generated images during training as soft
labels (e.g., soft cross-entropy loss or ranking loss). We
leave the exploration of this avenue to future research.

Why are the generated samples Hard Negatives? Given
that the generated images share visual features with the
source image, we posit that they should be situated in close
proximity to the source image in the embedding space while
embodying the semantics of the target class. To provide
further insight into our hypothesis, we generate UMAP
[53] plots for augmentation samples from various genera-
tive methods, as illustrated in Fig 4. Initially, we note that
samples generated by GeNIe exhibit a more dispersed dis-
tribution, spanning the boundaries of classes compared to
other augmentation methods. We characterize these sam-
ples as hard negatives. Additionally, a reduction in the noise
level within GeNIe results in more diverse samples, even
though this diversity comes with a trade-off in label consis-
tency, as discussed earlier.

5. Conclusion
GeNIe leverages diffusion models to generate challenging
samples for the target category while retaining some low-
level and contextual features from the source image. Our
experiments, spanning few-shot and long-tail distribution
settings, showcase GeNIe’s effectiveness, especially in
categories with limited examples. We hope our paper
facilitates developing better hard-negative augmentation
methods with the advancement of generative AI methods.
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Appendices
A. Visualization of Generative Samples
Additional visuals resembling Fig 2 are presented in Fig A1, and more visuals akin to Fig 3 can be found in Fig A2.

B. Details of Fine-grained Dataset
We provide detailed information for each Fine-grained dataset in Table A1, as discussed in Section 4.3.

Figure A1. Visualization of Generative Samples: We show more visualizations similar to Figure 2. We compare GeNIe with two
baselines: Img2ImgL augmentation uses both image and text prompt from the same category, resulting in less challenging examples.
Txt2Img augmentation generates images based solely on a text prompt, potentially deviating from the task’s visual domain. GeNIe
augmentation incorporates the target category name in the text prompt along with the source image, producing desired images with an
optimal amount of noise, balancing the impact of the source image and text prompt.

Dataset Classes Train samples Test samples

CUB200 [86] 200 5994 5794
Food101 [6] 101 75750 25250
Cars [38] 196 8144 8041
Aircraft [52] 41 6,667 3333

Table A1. We list the sizes of train and test splits of the Fine-grained dataset. We use the provided train set for few-shot sampling, and the
provided test sets for our evaluation. For the Aircraft dataset we use manufacturer hierarchy.
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Figure A2. Effect of noise in GeNIe: Just like in Fig 3, we use GeNIe to create augmentations with varying noise levels. As illustrated in
the example above, a reduced amount of noise leads to images closely mirroring the semantics of the source images, causing a misalignment
with the intended target label.
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