
Compact3D: Compressing Gaussian Splat Radiance Field Models
with Vector Quantization

K L Navaneet∗ Kossar Pourahmadi Meibodi* Soroush Abbasi Koohpayegani Hamed Pirsiavash

University of California, Davis

Abstract

3D Gaussian Splatting is a new method for modeling
and rendering 3D radiance fields that achieves much faster
learning and rendering time compared to SOTA NeRF meth-
ods. However, it comes with a drawback in the much larger
storage demand compared to NeRF methods since it needs
to store the parameters for several 3D Gaussians. We no-
tice that many Gaussians may share similar parameters, so
we introduce a simple vector quantization method based on
K-means algorithm to quantize the Gaussian parameters.
Then, we store the small codebook along with the index of
the code for each Gaussian. Moreover, we compress the
indices further by sorting them and using a method simi-
lar to run-length encoding. We do extensive experiments on
standard benchmarks as well as a new benchmark which
is an order of magnitude larger than the standard bench-
marks. We show that our simple yet effective method can
reduce the storage cost for the original 3D Gaussian Splat-
ting method by a factor of almost 20× with a very small
drop in the quality of rendered images. Our code is avail-
able here: https://github.com/UCDvision/compact3d.

1. Introduction
Recently, we have seen great progress in radiance field
methods to reconstruct a 3D scene using multiple images
captured from multiple viewpoints. NeRF [38] is proba-
bly the most well-known method that employs an implicit
neural representation to learn the radiance field by a deep
model implicitly. Although very successful, NeRF methods
are very slow in training and rendering. There are various
methods to solve this problem, however, they usually come
with some cost in the quality of the rendered images.

The Gaussian Splatting method [31] for radiance field
rendering is a new paradigm in learning radiance fields. The
idea is to model the scene using many Gaussian shapes.
Each Gaussian has several parameters including its position

*Equal contribution

Figure 1. Comparison of performance, inference speed, and
memory time. The size of the points is proportional to the size
of the trained models. Our compressed version of 3DGS , termed
CompGS , maintains the speed and performance of 3DGS while
reducing its size to the levels of NeRF based approaches.

in 3D space, covariance matrix, opacity, color, and spherical
harmonics of the color that need to be learned from multi-
ple view images. The main advantage of this method over
NeRF methods is that the training and rendering are much
faster. This is mainly due to the simplicity of projecting
3D Gaussians to the 2D image space and then rendering the
view by combining several projected Gaussians along with
their opacity using rasterizing. This results in real-time ren-
dering of the scenes on a single GPU (ref. Fig. 1). Another
advantage is that unlike NeRF, the 3D structure of the scene
is explicitly stored in the parameter space rather than im-
plicit storage in NeRF models. This property enables many
operations including editing the 3D scene directly in the pa-
rameter space.

One of the main drawbacks of the Gaussian Splatting
method compared to NeRF variations is that Gaussian
Splatting needs at least an order of magnitude more parame-
ters compared to NeRF. This increases the storage and com-
munication requirements of the model and also the memory
at the inference time, which can be very limiting in many
real-world applications involving smaller IoT devices. For
instance, the large memory consumption may be prohibitive
in storing, communicating, and rendering several radiance
field models on AR/VR headsets.

1

https://github.com/UCDvision/compact3d


In this paper, we are interested in compacting Gaussian
Splatting representations without sacrificing their rendering
speed to enable their usage in various applications including
low-storage or low-memory IoT devices and AR/VR head-
sets. Our main intuition is that several Gaussians may be
able to share some of their parameters (e.g. covariance ma-
trix) with each other. Hence, we simply vector-quantize pa-
rameters and store the codebook along with the index for
each Gaussian. This can result in a huge reduction in the
storage of the learned radiance fields. Also, it can reduce
the memory footprint at the rendering time since the index
can act as a pointer to the correct code freeing the memory
needed to replicate those parameters for all Gaussians.

To this end, we use simple K-means algorithm to vector
quantize the parameters at the learning time. Inspired by
various quantization-aware learning methods in deep learn-
ing [45], we use the quantized model at the forward pass
while updating the non-quantized model at the backward
pass. To reduce the computation overhead of running K-
means , we update the centroids at every iteration since it
is cheap, but update the assignments less frequently (e.g.,
every 100 iterations) since it is costly. Moreover, since the
Gaussians are a set of non-ordered elements, we compress
the representation further by sorting the Gaussians based on
one of the quantized parameters and storing the indices us-
ing the Run-Length-Encoding (RLE) method.

Unlike visual recognition community that uses large
scale benchmarks, interestingly, radiance field modeling
community traditionally has used small datasets including
handful of 3D scenes: maximum of 13 total real world
scenes in several papers (e.g.3DGS [31]). We believe this is
due to the computational cost of NeRF-based methods (sev-
eral hours of training time for each scene). Hence, with the
recent advancements in this field including Gaussian Splat-
ting that takes only a few minutes to learn a scene, it may
be the time to move beyond small benchmarks and eval-
uate methods on larger scale benchmarks. Therefore, we
introduce using an already existing dataset [6] as a new
benchmark for radiance field modeling that is an order of
magnitude larger than the traditional datasets (200 vs 13
scenes). We believe the community will benefit from us-
ing this larger benchmark to evaluate future radiance field
methods with a reasonable computational demand.

2. Related Work
Novel-view synthesis methods: Early deep learning tech-
niques for novel-view synthesis used CNNs to estimate
blending weights or texture-space solutions [16, 25, 48,
54, 62]. However, the use of CNNs faced challenges with
MVS-based geometry and caused temporal flickering. Vol-
umetric representations began with Soft3D [42], and sub-
sequent techniques used deep learning with volumetric ray-
marching [27, 50]. Mildenhall et al. introduced Neural Ra-

diance Fields (NeRFs) [38] to improve the quality of syn-
thesized novel views, but the use of a large Multi-Layer Per-
ceptron (MLP) as the backbone and dense sampling slowed
down the process a lot. Successive methods sought to bal-
ance quality and speed, with Mip-NeRF360 achieving top
image quality [4]. Recent advances prioritize faster train-
ing and rendering via spatial data structures, encodings, and
MLP adjustments [10, 17, 18, 26, 39, 47, 52, 59, 61]. No-
table methods, like InstantNGP [39], use hash grids and oc-
cupancy grids for accelerated computation with a smaller
MLP, while Plenoxels [17] entirely forgo neural networks,
relying on Spherical Harmonics for directional effects. De-
spite impressive results, challenges in representing empty
space, limitations in image quality, and rendering speed per-
sist in NeRF methods. In contrast, 3D Gaussian Splatting
[31] achieves superior quality and faster rendering with-
out implicit learning [4]. However, the main drawback of
3D Gaussian Splatting is its increased storage compared to
NeRF methods which may limit its usage in many applica-
tions such as edge devices. We are able to keep the quality
and fast rendering speed of 3D Gaussian Splatting method
while providing reduced model storage by applying a vector
quantization scheme to Gaussian parameters.
Bit Quantization: Reducing the number of bits to repre-
sent each parameter in a deep neural network is a commonly
used method to quantize models [24, 30, 33] that result in
smaller memory footprints. Representing weights in 64 or
32-bit formats may not be crucial for a given task, and a
lower-precision quantization can lead to memory and speed
improvements. Dettmers et al. [14] show 8-bit quantiza-
tion is sufficient for large language models. In the extreme
case, weights of neural networks can be quantized using bi-
nary values. XNOR [44] examines this extreme case by
quantization-aware training of a full-precision network that
is robust to quantization transformations.
Vector Quantization: Vector quantization (VQ) [15, 19–
21] is a lossy compression technique that converts a large
set of vectors into a smaller codebook and represents each
vector by one of the codes in the codebook. As a result, one
needs to store only the code assignments and the codebook
instead of storing all vectors. This compression technique
has been used in many applications including image com-
pression [12], video and audio codec [34, 37], compressing
deep networks [11, 20], and generative models [22, 46, 55].
We apply a similar method to compressing 3DGS models.
Compression for 3D scene representation methods.
Since NeRF relies on dense sampling of color values and
opacity, the computational costs are significant. To effi-
ciently represent 3D scenes and objects, methods adopt dif-
ferent data structures such as trees [57, 61], point clouds
[41, 60], and grids [8, 17, 39, 49, 51, 52]. With grid struc-
tures training iterations can be completed in a matter of min-
utes. However, dense 3D grid structures may require sub-

2



Figure 2. Overview of CompGS : We compress 3DGS using vector quantization of the parameters of the Gaussians. The quantization
is performed along with the training of the Gaussian parameters. Considering each Gaussian as a vector, we perform K-means clustering
to represent the N Gaussians in the model with k cluster centers (codes). Each Gaussian is then replaced by its corresponding code for
rendering and loss calculation. The gradients wrt centers are copied to all the elements in the corresponding cluster and the non-quantized
versions of the parameters are updated. Only the codebook and code assignments for each Gaussian are stored and used for inference.
CompGS maintains the real-time rendering property of 3DGS while compressing it by an order of magnitude.

stantial amounts of memory. Several methods have worked
on reducing the size of such volumetric grids [8, 39, 52, 53].
Instant-NGP [39] uses hash-based multi-resolution grids.
VQAD [52] replaces the hash function with codebooks and
vector quantization.

Another line of work decomposes 3D grids into lower
dimensional components, such as planes and vectors, to re-
duce the memory requirements [8, 29, 53]. Despite reduc-
ing the time and space complexity of the 3D scenes, their
sizes are still larger than MLP-based methods. VQRF [36]
compresses volumetric grid-based radiance fields by adopt-
ing the VQ strategy to encode color features into a compact
codebook.

While we also employ vector quantization, we differ
from the above approaches in the method employed for
novel view synthesis. Unlike the NeRF based approaches
described above, we aim to compress 3DGS which uses a
collection of 3D Gaussians to represent the 3D scene and
does not contain grid like structures or neural networks.

Deep Model Compression. Model compression tries to re-
duce the storage size without changing the accuracy of orig-
inal models. Model compression techniques can be divided
to 1) model pruning [23, 24, 56, 58] that aims to remove
redundant layers of neural networks; 2) weight quantization
[30, 33, 40], and 3) knowledge distillation [2, 3, 9, 28, 43],
in which a compact student model is trained to mimic the
original teacher model. Some works have applied these
techniques to volumetric radiance fields [13, 35, 61]. For in-
stance, TensoRF [8] decompose volumetric representations
via low-rank approximation.

3. Method
Here, we briefly describe the 3DGS [31] method for learn-
ing and rendering 3D scenes and explain our vector quanti-
zation approach for compressing it.
Overview of 3DGS: 3DGS models a scene using a collec-
tion of 3D Gaussians. A 3D Gaussian is parameterized by
its position and covariance matrices in the 3D space.

G(x) = e−
1
2 (x−µ)TΣ−1(x−µ) (1)

where x−µ is the position vector, µ is the position, and Σ is
the 3D covariance matrix of the Gaussian. Since the covari-
ance matrix needs to be positive definite, it is factored into
its scale (S) and rotation (R) matrices as Σ = RSSTRT

for easier optimization. In addition, each Gaussian has an
opacity parameter α. Since the color of the Gaussians may
depend on the viewing angle, the color of each Gaussian is
modeled by a Spherical Harmonics (SH) of order 3 in addi-
tion to a DC component for the color.

Given a view-point, the collection of 3D Gaussians is ef-
ficiently rendered in a differentiable manner to get a 2D im-
age by α-blending of anisotropic splats, sorting, and using
a tile-based rasterizer. At the training time, 3DGS renders
the training view points and minimizes the loss between the
groundtruth and rendered images in the pixel space. The
loss is ℓ1 loss plus an SSIM loss in the pixel space. 3DGS
initializes the optimization by a point cloud achieved by a
standard SfM method and iteratively prunes the ones with
small opacity parameter and adds new ones when the gradi-
ent is large. 3DGS paper shows that it is extremely fast to
train and is capable of real-time rendering while matching

3



or outperforming SOTA NeRF approaches in terms of 3D
model quality.

Compression of 3DGS: 3DGS requires a few million
Gaussians to model a typical scene. With 59 parameters
per Gaussian, the storage size of the trained model is an or-
der of magnitude larger than most NeRF approaches (e.g.,
Mip-NeRF360 [4]). This makes it inefficient for some ap-
plications including edge devices. We are interested in re-
ducing the number of parameters. Our main intuition is that
many Gaussians may have similar parameter values (e.g.,
covariance). Hence, we use simple vector quantization us-
ing K-means algorithm to compress the parameters. Fig. 2
provides an overview of our approach.

Consider a 3DGS model has n Gaussians with a d di-
mensional parameter vector for each. We run K-means al-
gorithm to cluster the vectors into k clusters. Then, one can
store the model using k vectors of size d and n integer in-
dices (one for each Gaussian). Since n >> k, this method
can result in a large compression ratios. In a typical scene,
n is a few millions while k is a few thousands.

In learning the parameters of 3DGS model, we store the
non-quantized parameters. In the forward pass of learning
3DGS, we quantize the parameters and replace them with
the quantized version (centroids) to do the rendering and
calculate the loss. Then, we do the backward pass to get the
gradients for the quantized parameters and copy the gradi-
ents to the non-quantized parameters to update them. We
use straight-through estimator proposed in STE [7]. After
learning, we discard the non-quantized parameters and keep
only the codebook and indices of the codes for Gaussians.

Running K-means after every iteration of the gradient
descent may be costly. K-means has two steps: updat-
ing centroids given assignments, and updating assignments
given centroids. We note that the latter is more expensive
while the former is a simple averaging. Hence, we update
the centroids after each iteration and update the assignments
once every t iterations. We use t = 100 in our experiments.

Performing a single K-means for the whole d dimen-
sional parameters requires a huge codebook since the dif-
ferent parameters of the Gaussian are not necessarily cor-
related. Hence, we group similar parameters together and
cluster them independently to learn a separate codebook for
each. This requires storing multiple indices for each Gaus-
sian. In our main method, we quantize DC component of
color, spherical harmonics, scale, and rotation parameters
separately, resulting in 4 codebooks. We do not quantize
opacity parameter since it is a single scalar and do not quan-
tize the position of the Gaussians since sharing them results
in overlapping Gaussians which does not make sense.

Since the indices are integer values, we use fewer num-
ber of bits compared to the original parameters to store each.
Moreover, 3DGS models the scene as a set of Gaussians
where the ordering does not matter. Hence, we sort the

Gaussians based on one of the indices so that Gaussians
using the same code appear together in the list. Then, for
that index, instead of storing n integers, we store the index
of the Gaussian that the index of its code in the codebook
increases by one. This is similar to run-length-coding for
data compression. This method reduces the size of one of
the indices from n integers to k integers.

4. Experiments
Implementation details: For all our experiments, we use
the publicly available official code repository [1] of 3D
Gaussian Splat [31] provided by its authors. There are no
changes in the hyperparameters used for training compared
to 3D Gaussian Splat. The Gaussian parameters are trained
without any vector quantization till 15K iterations and
K-means quantization is used for the remaining 15K
iterations. A standard K-means iteration involves distance
calculation between all elements (Gaussian parameters)
and all cluster centers followed by assignment to the closest
center. The centers are then updated using new cluster
assignments and the loop is repeated. We use 10 such
K-means iterations in our experiments once every 100 iter-
ations till iteration 25K and keep the assignments constant
thereafter till the last iteration, 30K The K-means cluster
centers are updated using the non-quantized Gaussian
parameters after each iteration of training. The covariance
(scale and rotation) and color (DC and harmonics) compo-
nents of each Gaussian is vector quantized while position
(mean) and opacity parameters are not quantized. Addi-
tional results with different parameters being quantized
are provided in Table 6. Unless mentioned differently, we
use a codebook of size 512 for the color and 4016 for the
covariance parameters. The scale parameters of covariance
are quantized before applying the exponential activation on
them. Similarly, quaternion based rotation parameters are
quantized before normalization.

Datasets: We primarily show results on three challeng-
ing real world datasets - Tanks&Temples[32], Deep Blend-
ing [25] and Mip-NeRF360 [4] containing two, two and
nine scenes respectively. Additionally, we provide results
on our large scale ARKit [6] dataset created using the
ARKit dataset. ARKit is an order of magnitude larger than
the other datasets with 200 scenes.

ARKit [6] is an extensive indoor scene understanding
dataset comprising 5, 048 scans encompassing 1, 661
distinct scenes. Each sequence includes camera poses and
utilizes LiDAR scanner-based ARKit scene reconstruction.
The videos are recorded using the 2020 iPad Pro and have
a resolution of 1920 × 1440. We exclusively utilize the
RGB frames from each video. To construct our dataset, we
randomly select 200 raw videos from the ARKit dataset,
extracting a uniform sample of 300 frames from each.

4



Table 1. Comparison with SOTA methods for novel view synthesis. 3DGS [31] performs comparably or outperforms the best of the
NeRF based approaches while maintaining a high rendering speed during inference. Trained NeRF models are significantly smaller than
3DGS since NeRFs are parameterized using neural networks while 3DGS requires storage of parameters of millions of 3D Gaussians.
CompGS is a vector quantized version of 3DGS that maintains the speed and performance advantages of 3DGS while being an order of
magnitude smaller. We report the averaged FPS and memory over all datasets. CompGS is identical to 3DGS during inference and thus
has the same FPS. ∗Reproduced using official code. † Reported from 3DGS [31].

Dataset Mip-NeRF360 Tanks&Temples Deep Blending Avg Avg
Method SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ FPS Mem

Plenoxels† 0.626 23.08 0.463 0.719 21.08 0.379 0.795 23.06 0.510 10.3 2.4 GB
INGP-Base† 0.671 25.30 0.371 0.723 21.72 0.330 0.797 23.62 0.423 10.7 13 MB
INGP-Big † 0.699 25.59 0.331 0.745 21.92 0.305 0.817 24.96 0.390 8.86 48 MB
M-Nerf360† 0.792 27.69 0.237 0.759 22.22 0.257 0.901 29.40 0.245 0.09 8.6 MB
3DGS † 0.815 27.21 0.214 0.841 23.14 0.183 0.903 29.41 0.243 142 607 MB
3DGS ∗ 0.813 27.42 0.217 0.844 23.68 0.178 0.899 29.49 0.246 142 607 MB
CompGS 4k 0.804 26.97 0.234 0.836 23.31 0.194 0.904 29.76 0.248 142 51.6 MB
CompGS 32k 0.808 27.16 0.228 0.840 23.47 0.188 0.903 29.75 0.247 142 54.6 MB

Subsequently, we employ the code provided by 3DGS [31]
to extract undistorted images and Structure-from-Motion
(SfM) information from the input images. Scenes con-
taining fewer than 100 frames with SfM information are
omitted from our dataset compilation. This process is
reiterated until we assemble 200 scenes, each with more
than 100 frames containing SfM information. The dataset
can easily be extended in the future by including more of
the remaining scenes from the ARKit dataset.

Baselines: As we propose a method (termed CompGS) for
compacting 3DGS, we focus our comparisons with 3DGS
and different baseline methods for compressing it. We
consider bit quantization (denoted as Int-16/8/4 in results)
and 3DGS without the harmonic components for color
(denoted as 3DGS-No-SH) as an alternative compression
methods. Bit-quantization is performed using the stan-
dard Absmax quantization [14] technique. Additionally,
Table 1 shows comparison with state-of-the-art NeRF
approaches [4, 17, 39]. Mip-NeRF360 [4] achieves high
performance comparable to 3DGS while Plenoxels [17]
and InstantNGP[39] have high frame-rate for rendering
and very low training time. InstantNGP and Mip-NeRF360
are also comparable in model size to our compressed model.

Evaluation: For a fair comparison, we use the same train-
test split as Mip-NeRF360 [4] and 3DGS [31] and directly
report the metrics for other methods from [31]. We also
report our reproduced metrics for 3DGS since we observe
slightly better results compared to the ones reported in [31]
on some of the scenes when we run their code ourselves.
We report the standard evaluation metrics of SSIM, PSNR
and LPIPS. The common practice is to report the average of
PSNR across a set of images and scenes. We do report this
as PSNR. However, this metric may be dominated by very

accurate reconstructions (smaller errors) since it is based on
the geometric average of the errors due to the log operation
in PSNR calculation. Hence, for our larger dataset, we also
report PSNR-AM for which we average the error across all
images and scenes before calculating the PSNR. In compar-
ing model sizes, we normalize all methods by dividing them
by the size of our method. The number of Gaussians in a
scene affect the memory calculation for 3DGS based meth-
ods. When comparing them, we report the average memory
over all datasets calculated by setting the number of Gaus-
sians equal to its average over all scenes and datasets.

4.1. Results

Comparison of our results with state-of-the-art (SOTA)
approaches is shown in Table 1. Our vector quantized
method has a small drop in performance compared to the
non-quantized 3DGS but is comparable to SOTA NeRF
approaches like Mip-NeRF360. The model memory foot-
print drastically reduces for CompGS compared to 3DGS ,
making it comparable to NeRF approaches. This reduces a
big disadvantage of 3DGS models and makes it more prac-
tical. The compression achieved by CompGS is impressive
considering that more than two-thirds of its memory is
due to the non-quantized position and opacity parameters.
Additionally CompGS maintains the other advantages
of 3DGS such as high frame rate for real-time rendering
during inference, low inference memory usage and low
training time. A limitation of CompGS compared to 3DGS
is the overhead in compute and training time introduced
by the K-means clustering algorithm. We observe that the
training time is close to double the time required for 3DGS
when 10 K-means iterations is done every 100 iterations
of Gaussian training (our default setting). However, the
training time is still orders of magnitude smaller than the
high-quality NeRF based approaches like Mip-NeRF360 .

5



Figure 3. Qualitative comparison of novel view synthesis approaches. We visualize images from different scenes across datasets for
SOTA NeRF, 3DGS , our CompGS and the No-SH variant of 3DGS . All methods based on 3DGS have better reconstruction of finer
details like spokes of the bicycle wheel compared to NeRF approaches. Both compressed versions CompGS and 3DGS-No-SH are similar
in appearance to 3DGS with no additional visually apparent errors.

Note that we do not employ techniques for faster K-means
such as tracking and updating only those points that have
moved sufficiently far from the current position. This
can be particularly helpful in our case since the cluster
assignments are not significantly altered at the later stages
of training. More optimization of the hyperparameters
(frequency and number of K-means iterations) too can help
reduce the training time. All the experiments were run on a
single RTX-6000 GPU.

Comparison of compression methods: In Table 2, we
compare the proposed vector quantization based compres-
sion against other baseline approaches for compressing
3DGS . Since the spherical harmonic components used for
modeling color make up nearly three-fourths of all the pa-
rameters of each Gaussian, a trivial compression baseline
is to use a variant of 3DGS with only the DC component
for color and no harmonics. This baseline (3DGS-No-SH )
achieves a high compression with just 23.7% of the original

model size but has a drop in performance. Our CompGS
approach outperforms 3DGS-No-SH while using less than
half its memory. We also consider a variant of CompGS
with a single codebook for both SH and DC parameters
(termed SH+DC) with a larger codebook of size of 4096.
This has a marginal decrease in both memory and perfor-
mance compared to default CompGS suggesting that corre-
lated parameters can be combined to reduce the number of
indices to be stored.

Fig. 3 shows qualitative comparison of CompGS across
multiple datasets with both SOTA approaches and compres-
sion methods for 3DGS . Both CompGS and 3DGS-No-SH
are visually similar to 3DGS , preserving finer details such
as the spokes of the bike and bars of dish-rack. Among
NeRF approaches, Mip-NeRF360 is closest in terms of
quality to 3DGS while InstantNGP trades-off quality for in-
ference and training speed.

All the above approaches are trained using 32-bit
precision for all Gaussian parameter values. Post-training

6



Table 2. Comparison of compression methods for 3DGS. We evaluate different baseline approaches for compressing 3DGS. All memory
values are reported as a ratio of the method with our smallest model. CompGS performs favorably compared to all methods both in terms
of novel view synthesis performance and compression. We find that K-means based quantization of a pretrained model is not effective
and that is crucial to perform our quantization during the training of the Gaussian parameters. Bit-quantization approaches closely match
the original method when the number of bits is high but the performance greatly degrades when it is reduced to just 4-bits per value. Not
quantizing the position (Int-x no-pos) is crucial, especially with higher degrees of quantization. Since harmonics constitute 76% of each
Gaussian, 3DGS-no-SH achieves a high level of compression. But CompGS with only quantized harmonics achieves similar compression
with nearly no loss in performance compared to 3DGS .

Mip-NeRF360 Tanks&Temples Deep Blending
Method SSIM PSNR LPIPS SSIM PSNR LPIPS SSIM PSNR LPIPS Mem

3DGS 0.813 27.42 0.217 0.844 23.68 0.178 0.899 29.49 0.246 20.0
3DGS-No-SH 0.802 26.80 0.229 0.833 23.16 0.190 0.900 29.50 0.247 4.8
Post-train K-means 4k 0.768 25.46 0.266 0.803 22.12 0.226 0.887 28.61 0.268 1.7
CompGS SH 4k 0.811 27.25 0.223 0.842 23.57 0.183 0.902 29.60 0.246 4.8
CompGS 4k 0.804 26.97 0.234 0.836 23.31 0.194 0.904 29.76 0.248 1.7
CompGS 32k 0.808 27.16 0.228 0.840 23.47 0.188 0.903 29.75 0.247 1.8

Int16 0.804 27.25 0.223 0.836 23.56 0.185 0.900 29.49 0.247 10.0
Int8 no-pos 0.812 27.38 0.219 0.843 23.67 0.180 0.900 29.47 0.247 5.8
Int8 0.357 14.41 0.629 0.386 12.37 0.625 0.709 21.58 0.457 5.0
Int4 no-pos 0.489 17.42 0.525 0.488 12.94 0.575 0.746 19.90 0.446 3.4
3DGS-No-SH Int16 0.789 26.59 0.237 0.826 23.04 0.198 0.900 29.50 0.248 2.4
CompGS 4k, Int16 0.796 26.83 0.239 0.830 23.21 0.199 0.904 29.76 0.248 1.0

bit quantization of 3DGS to 16-bits reduces the memory
by half with very little drop in performance. However,
reducing the precision to 8-bits results in a huge degra-
dation of the model. This drop is due to the quantization
of the position parameters of the Gaussians. Excluding
them from quantization (denoted as Int8) results in a model
comparable to the 32-bit variant. However, further reduc-
tion to 4-bits degrades the model even when the position
parameters are not quantized. Note that bit quantization
approaches have significantly lower compression compared
to CompGS and they are a subset of the possible solutions
for our vector quantization based approach. Similar to
3DGS, CompGS has a small drop in performance when
16-bit quantization is used. The size of CompGS with
32-bit precision is just 1.7 times that of 16-bit since the
precision for cluster indices of quantized parameters does
not change. Our 16 − bit model achieves a 20× reduction
in size compared to the original 3DGS model.

Results on ARKit dataset: Table 3 and Fig. 4 show the
results on our large-scale ARKit benchmark. We also re-
port the results using PSNR-AM since the dataset is larger
than the previous benchmarks so standard PSNR may be
dominated by a single easy scene. Our compressed model
achieves nearly the same performance as 3DGS with ten
times lesser memory. Unlike CompGS , the 3DGS-No-SH
method suffers a significant drop in reconstruction quality.
It fails to reconstruct large parts of the image for some views
in many of the scenes.

Table 3. Comparison of results on the large scale ARKit
dataset. We introduce ARKit with 200 scenes as a large scale
benchmark for novel view synthesis. The benchmark is created
using a subset of multi-view images from the ARKit [5] indoor
scene understanding dataset. CompGS achieves a high level of
compression with nearly identical metrics for view synthesis. We
additionally report PSNR-AM as the PSNR calculated using arith-
metic mean of MSE over all the scenes in the dataset to prevent the
domination of high-PSNR scenes. Compressing such large scale
indoor scenes can be particularly helpful for VR applications.

Method SSIM PSNR PSNR-AM LPIPS Mem

3DGS 0.909 25.76 20.73 0.226 20.0
3DGS-No-SH 0.905 25.31 20.11 0.234 4.8
CompGS 0.909 25.70 20.73 0.229 1.7

Figure 4. Results on ARKit dataset. 3DGS-No-SH fails to re-
construct well in several images while CompGS is nearly identical
to 3DGS with a large reduction in model size.

7



Ground Truth CompGS 3DGSCompGS-Shared-Codebook
Bi

cy
cl

e
Co

un
te

r
Fl

ow
er

s
G

ar
de

n
K

itc
he

n

Figure 5. Qualitative analysis of shared codebook. We show the generalization of codebook learned using a single scene on various
scenes of the Mip-NeRF360 dataset. The codebook was trained on the ‘Counter’ scene (row-1) and frozen for the remaining scenes. The
codebooks for all four parameters (DC, SH, Scale, Rot) are shared across scenes. Both CompGS and CompGS-Shared-Codebook are
visually similar to the uncompressed 3DGS with no conspicuous differences between them. 3DGS-No-SH requires twice more memory
than CompGS while 3DGS is ten times bigger than CompGS . The scenes and views used for visualization were chosen at random.

4.1.1 Generalization of codebook across scenes

We train our vector quantization approach including the
codebook and the code assignments on a single scene
(‘Counter’) of the Mip-NeRF360 dataset. We then freeze
the codebook and learn only assignments for the rest of the
eight scenes in the dataset and report the averaged perfor-
mance metrics over all scenes. The results are in table 4.
Interestingly, we observe that the shared codebook general-
izes well across all scenes with a small drop in performance
compared to learning a codebook for each scene. Sharing
learnt codebook can further reduce the memory requirement
and can help speed up the training of CompGS. The quality
of the codebook can be improved by learning it over mul-

tiple scenes. Fig. 5 shows qualitative comparison of the
same. There are no apparent differences between CompGS
and CompGS-Shared-Codebook approaches.

4.1.2 Ablations

Here, we analyze the effect of various components of our
quantization method and its hyperparameters on recon-
struction performance and model size.

Memory break-down of CompGS: In Table 5, we show
the contribution of various components to the final memory
usage of CompGS . Out of 59 parameters of each Gaussian,
we quantize 55 parameters of color and covariance while

8



Table 4. Effect of shared codebook. We train our vector quantization approach including the codebook and the code assignments on a
single scene (‘Counter’) of the Mip-NeRF360 dataset. We then freeze the codebook and learn only assignments for the rest of the eight
scenes in the dataset and report the averaged performance metrics over all scenes. Interestingly, we observe that the shared codebook
generalizes well across all scenes with a small drop in performance compared to learning a codebook for each scene. Sharing learnt
codebook can further reduce the memory requirement and can help speed up the training of CompGS. The quality of the codebook can be
improved by learning it over multiple scenes.

Dataset Mip-NeRF360
Method SSIM↑ PSNR↑ LPIPS↓

3DGS 0.815 27.21 0.214
3DGS ∗ 0.813 27.42 0.217
CompGS 4k 0.804 26.97 0.234
CompGS Shared Codebook 0.797 26.64 0.242

Non Quant
Quant

Num Params 4 55
Mem (16bit) 68% 32%
Mem (32bit) 81% 19%

k-Means Quant
Index Codebook

99% 1%
98% 2%

Table 5. Breakdown of memory usage in CompGS. We observe
that just 4 non-quantized values of the total 59 values per Gaussian
contribute to 68% and 81% of the total memory in our 16-bit and
32-bit variants respectively. For the quantized parameters, nearly
the entire memory is used to store the indices while the codebook
contributes less than 2%.

the 3 position and 1 opacity parameters are used as is. How-
ever, the bulk of the stored memory (68% and 81% for 16-
and 32-bits) is due to the non-quantized parameters. For
the quantized parameters, nearly all the memory is used to
store the cluster assignment indices with less than 2% used
for the codebook.
Parameter selection for quantization: Table 6 shows
the effect of quantizing different subsets of the Gaussian
parameters on the Tanks&Temples dataset. Quantizing the
position parameters significantly reduces the performance
on both the scenes. We thus do not quantize position
in any of our other experiments. Quantizing only the
harmonics (SH) of color parameter is nearly identical in
size to the no-harmonics (3DGS-No-SH ) of 3DGS . Our
SH has very little drop in metrics compared to 3DGS while
3DGS-No-SH is much worse off without the harmonics.
As more parameters are quantized, the performance of
CompGS slowly reduces. The combination of all color and
covariance parameters still results in a model with good
qualitative and quantitative results.

Effect of codebook size: Fig. 6 shows the effect of code-
book length on reconstruction performance for quantization
of different Gaussian parameters on the Tanks&Temples
dataset. The DC component of color has the smallest drop
in performance upon quantization and achieves results

Quantized Train Truck
Params SSIM↑ PSNR↑ SSIM↑ PSNR↑ Mem

3DGS 0.811 21.99 0.878 25.38 20.0
3DGS-No-SH 0.798 21.40 0.871 24.92 4.8

Variants of CompGS

Pos 0.673 19.81 0.730 21.65 19.0
SH 0.809 21.88 0.876 25.27 4.8
SH, DC 0.806 21.68 0.875 25.24 3.8
Rot(R) 0.808 21.83 0.876 25.32 18.7
Scale(Sc) 0.809 21.79 0.877 25.30 19.0
SH,R 0.805 21.67 0.874 25.20 3.5
SH,Sc 0.806 21.63 0.875 25.18 3.8
SH,Sc,R 0.801 21.64 0.872 25.02 2.6
SH+DC,Sc,R 0.797 21.41 0.868 24.89 1.6
SH,DC,Sc,R 0.801 21.64 0.871 24.97 1.7
SH,DC,Sc,R Int16 0.790 21.49 0.869 24.93 1.0

Table 6. Effectiveness of quantization on different Gaussian
parameters. Each Gaussian in 3DGS is parameterized using po-
sition (pos), scale, rotation (rot) and color (DC and harmonics SH).
We analyze the effect of quantizing each of these parameters and
their combinations on the view synthesis performance. SH+DC
denotes that a single codebook is used for both SH and DC. Po-
sition values cannot be quantized without greatly affecting model
performance. The rest of the parameters can be simultaneously
combined to obtain a high degree of compression without much
loss in quality of the generated views.

similar to the non-quantized version with as few as 128
cluster centers. The harmonics (SH) components of color
lead to a much bigger drop at lower number of clusters and
improve as more clusters are added. Note that CompGS
with only SH components is nearly the same size as 3DGS-
No-SH but has a much better performance (23.43 for ours
v/s 23.14 for 3DGS-No-SH ). The covariance parameters
(rotation and scale) have a drop in performance even at a
codebook size of 1024 but improve as the codebook size is
increased. Scale parameter especially benefits with more
codes, showing a large improvement with 8192 codes.
Based on trade-off between reconstruction performance
and model size and training time, We choose 512 clusters

9



Figure 6. Effect of codebook length. We evaluate the perfor-
mance of CompGS for varying values of codebook length on the
Tanks&Temples dataset. We ablate the method independently for
the four (SH, DC, Rotation, Scale) parameters by quantized just
one of them in each experiment. Scale requires a large number of
codes for effective modeling while the performance of DC com-
ponent of color saturates with just 128 clusters. CompGS SH is
significantly better than 3DGS-No-SH for all codebook lengths.

for the color parameters and 4096 clusters for covariance
parameters in CompGS 4k variant and 4096 codes for color
and 32768 for covariance in CompGS 32k.

Conclusion: 3D Gaussian Splatting efficiently models
3D radiance fields, outperforming NeRF in learning and
rendering efficiency at the cost of increased storage.
To reduce storage demands, we apply k-means-based
vector quantization, compressing indices and employing a
compact codebook. Our method cuts the storage cost of
3D Gaussian Splatting by almost 20×, maintaining image
quality across benchmarks.

Acknowledgments: This work is partially funded by NSF
grant 1845216 and DARPA Contract No. HR00112190135.

References
[1] Official code repository of 3d gaussian splatting for real-

time radiance field rendering. https://github.com/
graphdeco-inria/gaussian-splatting. 4

[2] Soroush Abbasi Koohpayegani, Ajinkya Tejankar, and
Hamed Pirsiavash. Compress: Self-supervised learning by
compressing representations. Advances in Neural Informa-
tion Processing Systems, 33:12980–12992, 2020. 3

[3] Lei Jimmy Ba and Rich Caruana. Do deep nets really need
to be deep? arXiv preprint arXiv:1312.6184, 2013. 3

[4] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P
Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded
anti-aliased neural radiance fields. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5470–5479, 2022. 2, 4, 5

[5] Gilad Baruch, Zhuoyuan Chen, Afshin Dehghan, Tal Dimry,
Yuri Feigin, Peter Fu, Thomas Gebauer, Brandon Joffe,

Daniel Kurz, Arik Schwartz, and Elad Shulman. Arkitscenes
- a diverse real-world dataset for 3d indoor scene understand-
ing using mobile rgb-d data. In NeurIPS, 2021. 7

[6] Gilad Baruch, Zhuoyuan Chen, Afshin Dehghan, Yuri Fei-
gin, Peter Fu, Thomas Gebauer, Daniel Kurz, Tal Dimry,
Brandon Joffe, Arik Schwartz, and Elad Shulman. ARK-
itscenes: A diverse real-world dataset for 3d indoor scene
understanding using mobile RGB-d data. In Thirty-fifth Con-
ference on Neural Information Processing Systems Datasets
and Benchmarks Track (Round 1), 2021. 2, 4

[7] Yoshua Bengio, Nicholas Léonard, and Aaron Courville.
Estimating or propagating gradients through stochastic
neurons for conditional computation. arXiv preprint
arXiv:1308.3432, 2013. 4

[8] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. In European
Conference on Computer Vision, pages 333–350. Springer,
2022. 2, 3

[9] Guobin Chen, Wongun Choi, Xiang Yu, Tony Han, and Man-
mohan Chandraker. Learning efficient object detection mod-
els with knowledge distillation. In Proceedings of the 31st
International Conference on Neural Information Processing
Systems, pages 742–751, 2017. 3

[10] Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and An-
drea Tagliasacchi. Mobilenerf: Exploiting the polygon ras-
terization pipeline for efficient neural field rendering on mo-
bile architectures. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
16569–16578, 2023. 2

[11] Minsik Cho, Keivan A Vahid, Qichen Fu, Saurabh Adya,
Carlo C Del Mundo, Mohammad Rastegari, Devang Naik,
and Peter Zatloukal. edkm: An efficient and accurate train-
time weight clustering for large language models. arXiv
preprint arXiv:2309.00964, 2023. 2

[12] Pamela C Cosman, Karen L Oehler, Eve A Riskin, and
Robert M Gray. Using vector quantization for image pro-
cessing. Proceedings of the IEEE, 81(9):1326–1341, 1993.
2

[13] Chenxi Lola Deng and Enzo Tartaglione. Compressing ex-
plicit voxel grid representations: fast nerfs become also
small. In Proceedings of the IEEE/CVF Winter Confer-
ence on Applications of Computer Vision, pages 1236–1245,
2023. 3

[14] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. Llm. int8 (): 8-bit matrix multiplication for
transformers at scale. arXiv preprint arXiv:2208.07339,
2022. 2, 5

[15] William H Equitz. A new vector quantization clustering al-
gorithm. IEEE transactions on acoustics, speech, and signal
processing, 37(10):1568–1575, 1989. 2

[16] John Flynn, Ivan Neulander, James Philbin, and Noah
Snavely. Deepstereo: Learning to predict new views from the
world’s imagery. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 5515–5524,
2016. 2

[17] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:

10

https://github.com/graphdeco-inria/gaussian-splatting
https://github.com/graphdeco-inria/gaussian-splatting


Radiance fields without neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5501–5510, 2022. 2, 5

[18] Stephan J Garbin, Marek Kowalski, Matthew Johnson, Jamie
Shotton, and Julien Valentin. Fastnerf: High-fidelity neural
rendering at 200fps. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 14346–
14355, 2021. 2

[19] Allen Gersho and Robert M Gray. Vector quantization and
signal compression. Springer Science & Business Media,
2012. 2

[20] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bour-
dev. Compressing deep convolutional networks using vector
quantization. arXiv preprint arXiv:1412.6115, 2014. 2

[21] Robert Gray. Vector quantization. IEEE Assp Magazine, 1
(2):4–29, 1984. 2

[22] Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo
Zhang, Dongdong Chen, Lu Yuan, and Baining Guo. Vec-
tor quantized diffusion model for text-to-image synthesis. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 10696–10706, 2022. 2

[23] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and
Pritish Narayanan. Deep learning with limited numerical
precision. In International conference on machine learning,
pages 1737–1746. PMLR, 2015. 3

[24] Song Han, Huizi Mao, and William J Dally. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015. 2, 3

[25] Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm,
George Drettakis, and Gabriel Brostow. Deep blending for
free-viewpoint image-based rendering. ACM Transactions
on Graphics (ToG), 37(6):1–15, 2018. 2, 4

[26] Peter Hedman, Pratul P Srinivasan, Ben Mildenhall,
Jonathan T Barron, and Paul Debevec. Baking neural ra-
diance fields for real-time view synthesis. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 5875–5884, 2021. 2

[27] Philipp Henzler, Niloy J Mitra, and Tobias Ritschel. Escap-
ing plato’s cave: 3d shape from adversarial rendering. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 9984–9993, 2019. 2

[28] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 3

[29] Binbin Huang, Xinhao Yan, Anpei Chen, Shenghua Gao, and
Jingyi Yu. Pref: Phasorial embedding fields for compact neu-
ral representations. arXiv preprint arXiv:2205.13524, 2022.
3

[30] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,
Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry
Kalenichenko. Quantization and training of neural networks
for efficient integer-arithmetic-only inference. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2704–2713, 2018. 2, 3

[31] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time

radiance field rendering. ACM Transactions on Graphics
(ToG), 42(4):1–14, 2023. 1, 2, 3, 4, 5, 13

[32] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen
Koltun. Tanks and temples: Benchmarking large-scale scene
reconstruction. ACM Transactions on Graphics (ToG), 36
(4):1–13, 2017. 4

[33] Raghuraman Krishnamoorthi. Quantizing deep convolu-
tional networks for efficient inference: A whitepaper. arXiv
preprint arXiv:1806.08342, 2018. 2, 3

[34] Yoon Yung Lee and John W Woods. Motion vector quanti-
zation for video coding. IEEE Transactions on Image Pro-
cessing, 4(3):378–382, 1995. 2

[35] Lingzhi Li, Zhen Shen, Zhongshu Wang, Li Shen, and
Ping Tan. Streaming radiance fields for 3d video synthe-
sis. Advances in Neural Information Processing Systems, 35:
13485–13498, 2022. 3

[36] Lingzhi Li, Zhen Shen, Zhongshu Wang, Li Shen, and
Liefeng Bo. Compressing volumetric radiance fields to 1 mb.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4222–4231, 2023. 3

[37] John Makhoul, Salim Roucos, and Herbert Gish. Vector
quantization in speech coding. Proceedings of the IEEE, 73
(11):1551–1588, 1985. 2

[38] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In Proceedings of the European Conference on Com-
puter Vision (ECCV), 2020. 1, 2, 13

[39] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a mul-
tiresolution hash encoding. ACM Transactions on Graphics
(ToG), 41(4):1–15, 2022. 2, 3, 5

[40] Parsa Nooralinejad, Ali Abbasi, Soroush Abbasi Kooh-
payegani, Kossar Pourahmadi Meibodi, Rana Muham-
mad Shahroz Khan, Soheil Kolouri, and Hamed Pirsiavash.
Pranc: Pseudo random networks for compacting deep mod-
els. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 17021–17031, 2023. 3

[41] Songyou Peng, Chiyu Jiang, Yiyi Liao, Michael Niemeyer,
Marc Pollefeys, and Andreas Geiger. Shape as points: A dif-
ferentiable poisson solver. Advances in Neural Information
Processing Systems, 34:13032–13044, 2021. 2

[42] Eric Penner and Li Zhang. Soft 3d reconstruction for view
synthesis. ACM Transactions on Graphics (TOG), 36(6):1–
11, 2017. 2

[43] Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model
compression via distillation and quantization. arXiv preprint
arXiv:1802.05668, 2018. 3

[44] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,
and Ali Farhadi. Xnor-net: Imagenet classification using bi-
nary convolutional neural networks. In Computer Vision -
ECCV 2016 - 14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part IV,
pages 525–542. Springer, 2016. 2

[45] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,
and Ali Farhadi. Xnor-net: Imagenet classification using bi-
nary convolutional neural networks, 2016. 2

11



[46] Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Gener-
ating diverse high-fidelity images with vq-vae-2. Advances
in neural information processing systems, 32, 2019. 2

[47] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas
Geiger. Kilonerf: Speeding up neural radiance fields with
thousands of tiny mlps. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 14335–
14345, 2021. 2

[48] Gernot Riegler and Vladlen Koltun. Free view synthesis. In
Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XIX
16, pages 623–640. Springer, 2020. 2

[49] Katja Schwarz, Axel Sauer, Michael Niemeyer, Yiyi Liao,
and Andreas Geiger. Voxgraf: Fast 3d-aware image synthe-
sis with sparse voxel grids. Advances in Neural Information
Processing Systems, 35:33999–34011, 2022. 2

[50] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias
Nießner, Gordon Wetzstein, and Michael Zollhofer. Deep-
voxels: Learning persistent 3d feature embeddings. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 2437–2446, 2019. 2

[51] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel
grid optimization: Super-fast convergence for radiance fields
reconstruction. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5459–
5469, 2022. 2

[52] Towaki Takikawa, Alex Evans, Jonathan Tremblay, Thomas
Müller, Morgan McGuire, Alec Jacobson, and Sanja Fidler.
Variable bitrate neural fields. In ACM SIGGRAPH 2022 Con-
ference Proceedings, pages 1–9, 2022. 2, 3

[53] Jiaxiang Tang, Xiaokang Chen, Jingbo Wang, and Gang
Zeng. Compressible-composable nerf via rank-residual de-
composition. In Advances in Neural Information Processing
Systems, 2022. 3

[54] Justus Thies, Michael Zollhöfer, and Matthias Nießner. De-
ferred neural rendering: Image synthesis using neural tex-
tures. Acm Transactions on Graphics (TOG), 38(4):1–12,
2019. 2

[55] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete
representation learning. Advances in neural information pro-
cessing systems, 30, 2017. 2

[56] Vincent Vanhoucke, Andrew Senior, and Mark Z Mao. Im-
proving the speed of neural networks on cpus. 2011. 3

[57] Liao Wang, Jiakai Zhang, Xinhang Liu, Fuqiang Zhao, Yan-
shun Zhang, Yingliang Zhang, Minye Wu, Jingyi Yu, and
Lan Xu. Fourier plenoctrees for dynamic radiance field ren-
dering in real-time. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
13524–13534, 2022. 2

[58] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and
Hai Li. Learning structured sparsity in deep neural networks.
arXiv preprint arXiv:1608.03665, 2016. 3

[59] Xiuchao Wu, Jiamin Xu, Zihan Zhu, Hujun Bao, Qixing
Huang, James Tompkin, and Weiwei Xu. Scalable neu-
ral indoor scene rendering. ACM Transactions on Graphics
(TOG), 2022. 2

[60] Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin
Shu, Kalyan Sunkavalli, and Ulrich Neumann. Point-nerf:

Point-based neural radiance fields. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5438–5448, 2022. 2

[61] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng,
and Angjoo Kanazawa. Plenoctrees for real-time rendering
of neural radiance fields. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 5752–
5761, 2021. 2, 3

[62] Tinghui Zhou, Shubham Tulsiani, Weilun Sun, Jitendra Ma-
lik, and Alexei A Efros. View synthesis by appearance flow.
In Computer Vision–ECCV 2016: 14th European Confer-
ence, Amsterdam, The Netherlands, October 11–14, 2016,
Proceedings, Part IV 14, pages 286–301. Springer, 2016. 2

12



Appendices
In this supplementary pdf, we compare the performance of our CompGS with state-of-the-art approaches on the NeRF-
Synthetic dataset (Section A). Section B provides insights on the learnt codebook assignments. We also provide additional
visualizations and qualitative comparisons on the ARKit dataset in Section C.

A. Results on NeRF-Synthetic dataset

The results (PSNR) for the NeRF-Synthetic dataset [38] are presented in Table 7. Our CompGS approach achieves an
impressive average improvement of 1.13 points in PSNR compared to the 3DGS-No-SH baseline while using less than half
its memory. As reported in the main submission, we report metrics for 3DGS both from the original paper and using our own
runs. We observe an improvement for 3DGS [31] over their official reported numbers by 0.5 points.

B. Analysis of learnt code assignments

In Fig. 7, we plot the sorted histogram of the code assignments (cluster to which each Gaussian belongs to) for each parameter
on the ‘Train’ scene of Tanks&Temples dataset. We observe that just a single code out of the 512 in total is assigned to nearly
5% of the Gaussians for both the SH and DC parameters. Similarly, a few clusters dominate even in the case of rotation and
scale parameters, albeit to a lower extent. Such a non-uniform distribution of cluster sizes suggest that further compression
can be achieved by using Huffman coding to store the assignment indices.

Table 7. Results on NeRF-Synthetic dataset. Here, we present the PSNR values for the synthesized novel views on the NeRF-Synthetic
dataset [38]. Our CompGS approach achieves an impressive average improvement of 1.13 points in PSNR compared to the 3DGS-No-SH
baseline while using less than half its memory. As reported in the main submission, we report metrics for 3DGS both from the original
paper and using our own runs. We observe an improvement of 3DGS over the reported numbers by 0.5points. ∗ indicates our own run.

Mic Chair Ship Materials Lego Drums Ficus Hotdog Avg.

Plenoxels 33.26 33.98 29.62 29.14 34.10 25.35 31.83 36.81 31.76
INGP-Base 36.22 35.00 31.10 29.78 36.39 26.02 33.51 37.40 33.18
Mip-Nerf 36.51 35.14 30.41 30.71 35.70 25.48 33.29 37.48 33.09
Point-NeRF 35.95 35.40 30.97 29.61 35.04 26.06 36.13 37.30 33.30
3DGS 35.36 35.83 30.80 30.00 35.78 26.15 34.87 37.72 33.32
3DGS∗ 36.80 35.51 31.69 30.48 36.06 26.28 35.49 38.06 33.80
3DGS-No-SH 34.37 34.09 29.86 28.42 34.84 25.48 32.30 36.43 31.97
CompGS 4k 35.99 34.92 31.05 29.74 35.09 25.93 35.04 37.04 33.10

Figure 7. Histogram of code assignments. We plot the sorted histogram of the code assignments (cluster to which each Gaussian belongs
to) for each parameter on the ‘Train’ scene of Tanks&Temples dataset. We observe that just a single code out of the 512 in total is assigned
to nearly 5% of the Gaussians for both the SH and DC parameters. Similarly, a few clusters dominate even in the case of rotation and scale
parameters, albeit to a lower extent. Such a non-uniform distribution of cluster sizes suggest that further compression can be achieved by
using Huffman coding to store the assignment indices.

13



Ground Truth CompGS [Ours] 3DGS 3DGS-No-SH
Fi

cu
s

Sh
ip

D
ru

m
s

Le
go

Ch
ai

r

Figure 8. Visualization of results on Sythetic-NeRF dataset. We compare the performance of our compressed CompGS with the original
3DGS and 3DGS-No-SH approaches on different scenes of the NeRF-Synthetic dataset. The difference between CompGS and 3DGS-No-
SH is apparent in some of these scenes. E.g., 3DGS-No-SH fails to effectively model the brown color of branches and shadows and bright
light on the leaves of the ‘Ficus’ scene. All approaches including 3DGS have imperfect reconstruction in some of the scenes like ‘Drums’
and ‘Lego’. The scenes and views used for visualization were chosen at random.

C. Qualitative comparison on ARKit dataset.
Figures 9 and 10 provide qualitative results on the ARKit dataset.

14



Figure 9. Visualization of ARKit dataset. ARKit is a 3D indoor scene dataset captured using a iPads/iPhones. The dataset consists of
videos of indoor environments like houses and office space from multiple view-points. We uniform sample images from each video to form
our benchmark dataset for novel view synthesis. Some sample images from different scenes are shown in this figure. The dataset presents
unique challenges such as the presence of motion blur due to the use of videos.

15



Figure 10. Qualitative analysis on ARKit dataset. We visualize the results of CompGS along with the uncomressed 3DGS and its variant
3DGS-No-SH . Presence of large noisy blobs is a common error mode for 3DGS-No-SH on this dataset. It also fails to faithfully reproduce
the colors and lighting in several scenes. The visual quality of the synthesized images for all methods is lower on this dataset compared
to the scenes present in standard benchmarks like Mip-NeRF360 , indicating its utility as a novel benchmark. Further comparison with
various NeRF based approaches and more analysis can help improve the results on this dataset.

16


	. Introduction
	. Related Work
	. Method
	. Experiments
	. Results
	Generalization of codebook across scenes
	Ablations


	Appendices
	. Results on NeRF-Synthetic dataset
	. Analysis of learnt code assignments
	. Qualitative comparison on ARKit dataset.

